helpful professor logo

45 Research Problem Examples & Inspiration

45 Research Problem Examples & Inspiration

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

Learn about our Editorial Process

research problems examples and definition, explained below

A research problem is an issue of concern that is the catalyst for your research. It demonstrates why the research problem needs to take place in the first place.

Generally, you will write your research problem as a clear, concise, and focused statement that identifies an issue or gap in current knowledge that requires investigation.

The problem will likely also guide the direction and purpose of a study. Depending on the problem, you will identify a suitable methodology that will help address the problem and bring solutions to light.

Research Problem Examples

In the following examples, I’ll present some problems worth addressing, and some suggested theoretical frameworks and research methodologies that might fit with the study. Note, however, that these aren’t the only ways to approach the problems. Keep an open mind and consult with your dissertation supervisor!

chris

Psychology Problems

1. Social Media and Self-Esteem: “How does prolonged exposure to social media platforms influence the self-esteem of adolescents?”

  • Theoretical Framework : Social Comparison Theory
  • Methodology : Longitudinal study tracking adolescents’ social media usage and self-esteem measures over time, combined with qualitative interviews.

2. Sleep and Cognitive Performance: “How does sleep quality and duration impact cognitive performance in adults?”

  • Theoretical Framework : Cognitive Psychology
  • Methodology : Experimental design with controlled sleep conditions, followed by cognitive tests. Participant sleep patterns can also be monitored using actigraphy.

3. Childhood Trauma and Adult Relationships: “How does unresolved childhood trauma influence attachment styles and relationship dynamics in adulthood?

  • Theoretical Framework : Attachment Theory
  • Methodology : Mixed methods, combining quantitative measures of attachment styles with qualitative in-depth interviews exploring past trauma and current relationship dynamics.

4. Mindfulness and Stress Reduction: “How effective is mindfulness meditation in reducing perceived stress and physiological markers of stress in working professionals?”

  • Theoretical Framework : Humanist Psychology
  • Methodology : Randomized controlled trial comparing a group practicing mindfulness meditation to a control group, measuring both self-reported stress and physiological markers (e.g., cortisol levels).

5. Implicit Bias and Decision Making: “To what extent do implicit biases influence decision-making processes in hiring practices?

  • Theoretical Framework : Cognitive Dissonance Theory
  • Methodology : Experimental design using Implicit Association Tests (IAT) to measure implicit biases, followed by simulated hiring tasks to observe decision-making behaviors.

6. Emotional Regulation and Academic Performance: “How does the ability to regulate emotions impact academic performance in college students?”

  • Theoretical Framework : Cognitive Theory of Emotion
  • Methodology : Quantitative surveys measuring emotional regulation strategies, combined with academic performance metrics (e.g., GPA).

7. Nature Exposure and Mental Well-being: “Does regular exposure to natural environments improve mental well-being and reduce symptoms of anxiety and depression?”

  • Theoretical Framework : Biophilia Hypothesis
  • Methodology : Longitudinal study comparing mental health measures of individuals with regular nature exposure to those without, possibly using ecological momentary assessment for real-time data collection.

8. Video Games and Cognitive Skills: “How do action video games influence cognitive skills such as attention, spatial reasoning, and problem-solving?”

  • Theoretical Framework : Cognitive Load Theory
  • Methodology : Experimental design with pre- and post-tests, comparing cognitive skills of participants before and after a period of action video game play.

9. Parenting Styles and Child Resilience: “How do different parenting styles influence the development of resilience in children facing adversities?”

  • Theoretical Framework : Baumrind’s Parenting Styles Inventory
  • Methodology : Mixed methods, combining quantitative measures of resilience and parenting styles with qualitative interviews exploring children’s experiences and perceptions.

10. Memory and Aging: “How does the aging process impact episodic memory , and what strategies can mitigate age-related memory decline?

  • Theoretical Framework : Information Processing Theory
  • Methodology : Cross-sectional study comparing episodic memory performance across different age groups, combined with interventions like memory training or mnemonic strategies to assess potential improvements.

Education Problems

11. Equity and Access : “How do socioeconomic factors influence students’ access to quality education, and what interventions can bridge the gap?

  • Theoretical Framework : Critical Pedagogy
  • Methodology : Mixed methods, combining quantitative data on student outcomes with qualitative interviews and focus groups with students, parents, and educators.

12. Digital Divide : How does the lack of access to technology and the internet affect remote learning outcomes, and how can this divide be addressed?

  • Theoretical Framework : Social Construction of Technology Theory
  • Methodology : Survey research to gather data on access to technology, followed by case studies in selected areas.

13. Teacher Efficacy : “What factors contribute to teacher self-efficacy, and how does it impact student achievement?”

  • Theoretical Framework : Bandura’s Self-Efficacy Theory
  • Methodology : Quantitative surveys to measure teacher self-efficacy, combined with qualitative interviews to explore factors affecting it.

14. Curriculum Relevance : “How can curricula be made more relevant to diverse student populations, incorporating cultural and local contexts?”

  • Theoretical Framework : Sociocultural Theory
  • Methodology : Content analysis of curricula, combined with focus groups with students and teachers.

15. Special Education : “What are the most effective instructional strategies for students with specific learning disabilities?

  • Theoretical Framework : Social Learning Theory
  • Methodology : Experimental design comparing different instructional strategies, with pre- and post-tests to measure student achievement.

16. Dropout Rates : “What factors contribute to high school dropout rates, and what interventions can help retain students?”

  • Methodology : Longitudinal study tracking students over time, combined with interviews with dropouts.

17. Bilingual Education : “How does bilingual education impact cognitive development and academic achievement?

  • Methodology : Comparative study of students in bilingual vs. monolingual programs, using standardized tests and qualitative interviews.

18. Classroom Management: “What reward strategies are most effective in managing diverse classrooms and promoting a positive learning environment?

  • Theoretical Framework : Behaviorism (e.g., Skinner’s Operant Conditioning)
  • Methodology : Observational research in classrooms , combined with teacher interviews.

19. Standardized Testing : “How do standardized tests affect student motivation, learning, and curriculum design?”

  • Theoretical Framework : Critical Theory
  • Methodology : Quantitative analysis of test scores and student outcomes, combined with qualitative interviews with educators and students.

20. STEM Education : “What methods can be employed to increase interest and proficiency in STEM (Science, Technology, Engineering, and Mathematics) fields among underrepresented student groups?”

  • Theoretical Framework : Constructivist Learning Theory
  • Methodology : Experimental design comparing different instructional methods, with pre- and post-tests.

21. Social-Emotional Learning : “How can social-emotional learning be effectively integrated into the curriculum, and what are its impacts on student well-being and academic outcomes?”

  • Theoretical Framework : Goleman’s Emotional Intelligence Theory
  • Methodology : Mixed methods, combining quantitative measures of student well-being with qualitative interviews.

22. Parental Involvement : “How does parental involvement influence student achievement, and what strategies can schools use to increase it?”

  • Theoretical Framework : Reggio Emilia’s Model (Community Engagement Focus)
  • Methodology : Survey research with parents and teachers, combined with case studies in selected schools.

23. Early Childhood Education : “What are the long-term impacts of quality early childhood education on academic and life outcomes?”

  • Theoretical Framework : Erikson’s Stages of Psychosocial Development
  • Methodology : Longitudinal study comparing students with and without early childhood education, combined with observational research.

24. Teacher Training and Professional Development : “How can teacher training programs be improved to address the evolving needs of the 21st-century classroom?”

  • Theoretical Framework : Adult Learning Theory (Andragogy)
  • Methodology : Pre- and post-assessments of teacher competencies, combined with focus groups.

25. Educational Technology : “How can technology be effectively integrated into the classroom to enhance learning, and what are the potential drawbacks or challenges?”

  • Theoretical Framework : Technological Pedagogical Content Knowledge (TPACK)
  • Methodology : Experimental design comparing classrooms with and without specific technologies, combined with teacher and student interviews.

Sociology Problems

26. Urbanization and Social Ties: “How does rapid urbanization impact the strength and nature of social ties in communities?”

  • Theoretical Framework : Structural Functionalism
  • Methodology : Mixed methods, combining quantitative surveys on social ties with qualitative interviews in urbanizing areas.

27. Gender Roles in Modern Families: “How have traditional gender roles evolved in families with dual-income households?”

  • Theoretical Framework : Gender Schema Theory
  • Methodology : Qualitative interviews with dual-income families, combined with historical data analysis.

28. Social Media and Collective Behavior: “How does social media influence collective behaviors and the formation of social movements?”

  • Theoretical Framework : Emergent Norm Theory
  • Methodology : Content analysis of social media platforms, combined with quantitative surveys on participation in social movements.

29. Education and Social Mobility: “To what extent does access to quality education influence social mobility in socioeconomically diverse settings?”

  • Methodology : Longitudinal study tracking educational access and subsequent socioeconomic status, combined with qualitative interviews.

30. Religion and Social Cohesion: “How do religious beliefs and practices contribute to social cohesion in multicultural societies?”

  • Methodology : Quantitative surveys on religious beliefs and perceptions of social cohesion, combined with ethnographic studies.

31. Consumer Culture and Identity Formation: “How does consumer culture influence individual identity formation and personal values?”

  • Theoretical Framework : Social Identity Theory
  • Methodology : Mixed methods, combining content analysis of advertising with qualitative interviews on identity and values.

32. Migration and Cultural Assimilation: “How do migrants negotiate cultural assimilation and preservation of their original cultural identities in their host countries?”

  • Theoretical Framework : Post-Structuralism
  • Methodology : Qualitative interviews with migrants, combined with observational studies in multicultural communities.

33. Social Networks and Mental Health: “How do social networks, both online and offline, impact mental health and well-being?”

  • Theoretical Framework : Social Network Theory
  • Methodology : Quantitative surveys assessing social network characteristics and mental health metrics, combined with qualitative interviews.

34. Crime, Deviance, and Social Control: “How do societal norms and values shape definitions of crime and deviance, and how are these definitions enforced?”

  • Theoretical Framework : Labeling Theory
  • Methodology : Content analysis of legal documents and media, combined with ethnographic studies in diverse communities.

35. Technology and Social Interaction: “How has the proliferation of digital technology influenced face-to-face social interactions and community building?”

  • Theoretical Framework : Technological Determinism
  • Methodology : Mixed methods, combining quantitative surveys on technology use with qualitative observations of social interactions in various settings.

Nursing Problems

36. Patient Communication and Recovery: “How does effective nurse-patient communication influence patient recovery rates and overall satisfaction with care?”

  • Methodology : Quantitative surveys assessing patient satisfaction and recovery metrics, combined with observational studies on nurse-patient interactions.

37. Stress Management in Nursing: “What are the primary sources of occupational stress for nurses, and how can they be effectively managed to prevent burnout?”

  • Methodology : Mixed methods, combining quantitative measures of stress and burnout with qualitative interviews exploring personal experiences and coping mechanisms.

38. Hand Hygiene Compliance: “How effective are different interventions in improving hand hygiene compliance among nursing staff, and what are the barriers to consistent hand hygiene?”

  • Methodology : Experimental design comparing hand hygiene rates before and after specific interventions, combined with focus groups to understand barriers.

39. Nurse-Patient Ratios and Patient Outcomes: “How do nurse-patient ratios impact patient outcomes, including recovery rates, complications, and hospital readmissions?”

  • Methodology : Quantitative study analyzing patient outcomes in relation to staffing levels, possibly using retrospective chart reviews.

40. Continuing Education and Clinical Competence: “How does regular continuing education influence clinical competence and confidence among nurses?”

  • Methodology : Longitudinal study tracking nurses’ clinical skills and confidence over time as they engage in continuing education, combined with patient outcome measures to assess potential impacts on care quality.

Communication Studies Problems

41. Media Representation and Public Perception: “How does media representation of minority groups influence public perceptions and biases?”

  • Theoretical Framework : Cultivation Theory
  • Methodology : Content analysis of media representations combined with quantitative surveys assessing public perceptions and attitudes.

42. Digital Communication and Relationship Building: “How has the rise of digital communication platforms impacted the way individuals build and maintain personal relationships?”

  • Theoretical Framework : Social Penetration Theory
  • Methodology : Mixed methods, combining quantitative surveys on digital communication habits with qualitative interviews exploring personal relationship dynamics.

43. Crisis Communication Effectiveness: “What strategies are most effective in managing public relations during organizational crises, and how do they influence public trust?”

  • Theoretical Framework : Situational Crisis Communication Theory (SCCT)
  • Methodology : Case study analysis of past organizational crises, assessing communication strategies used and subsequent public trust metrics.

44. Nonverbal Cues in Virtual Communication: “How do nonverbal cues, such as facial expressions and gestures, influence message interpretation in virtual communication platforms?”

  • Theoretical Framework : Social Semiotics
  • Methodology : Experimental design using video conferencing tools, analyzing participants’ interpretations of messages with varying nonverbal cues.

45. Influence of Social Media on Political Engagement: “How does exposure to political content on social media platforms influence individuals’ political engagement and activism?”

  • Theoretical Framework : Uses and Gratifications Theory
  • Methodology : Quantitative surveys assessing social media habits and political engagement levels, combined with content analysis of political posts on popular platforms.

Before you Go: Tips and Tricks for Writing a Research Problem

This is an incredibly stressful time for research students. The research problem is going to lock you into a specific line of inquiry for the rest of your studies.

So, here’s what I tend to suggest to my students:

  • Start with something you find intellectually stimulating – Too many students choose projects because they think it hasn’t been studies or they’ve found a research gap. Don’t over-estimate the importance of finding a research gap. There are gaps in every line of inquiry. For now, just find a topic you think you can really sink your teeth into and will enjoy learning about.
  • Take 5 ideas to your supervisor – Approach your research supervisor, professor, lecturer, TA, our course leader with 5 research problem ideas and run each by them. The supervisor will have valuable insights that you didn’t consider that will help you narrow-down and refine your problem even more.
  • Trust your supervisor – The supervisor-student relationship is often very strained and stressful. While of course this is your project, your supervisor knows the internal politics and conventions of academic research. The depth of knowledge about how to navigate academia and get you out the other end with your degree is invaluable. Don’t underestimate their advice.

I’ve got a full article on all my tips and tricks for doing research projects right here – I recommend reading it:

  • 9 Tips on How to Choose a Dissertation Topic

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 101 Hidden Talents Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Green Flags in a Relationship
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Signs you're Burnt Out, Not Lazy
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Toxic Things Parents Say to their Children

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

Logo

  • A Research Guide
  • Research Paper Topics
  • 35 Research Paper Problem Topics & Examples

35 Research Paper Problem Topics & Examples

quillbot banner

Read also: How to do a research paper and get an A
  • Social media, blackmailing and cyberbullying
  • The Incels and the threat they pose
  • Can you help if your friend seems to have depression?
  • Codependent relationships: how to get out?
  • Dealing with narcissists you can’t just forget about
  • When interrupting the personal life of other person can be justified?
  • Living through the loss
  • The phenomenon of “friend zone”, what can be done with it?
  • Overcoming the culture clash
  • Helping homeless people and resocializing them
  • Fighting drug selling in schools and campuses
  • The problem of drunk driving
  • How to rise from the bottom of the social hierarchy?
  • Dehumanizing people in prisons
  • Preventing human trafficking
  • Making healthy lifestyle a desired choice for the people
  • Improving the ecology of your hometown
  • Online data mining: how can we prevent it?
  • Gender discrimination and sexism
  • The problem of global hunger
  • Underemployment and unemployment
  • Balancing safety and the right to have private information
  • Manipulative advertising
  • Teaching children to spend more time offline
  • Cheating at schools and colleges
  • The problem of corruption
  • The choice of religion for the children from religious families
  • Modern beauty standards and positive body image
  • Self-esteem issues
  • Traffic problems: how to avoid traffic jams in your hometown?
  • What can be done right now to reduce pollution?
  • Money management on personal scale
  • Strict dress code at schools and in the companies
  • Overloading with information in the modern society
  • Enhancing the quality of family life

By clicking "Log In", you agree to our terms of service and privacy policy . We'll occasionally send you account related and promo emails.

Sign Up for your FREE account

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • Writing Strong Research Questions | Criteria & Examples

Writing Strong Research Questions | Criteria & Examples

Published on October 26, 2022 by Shona McCombes . Revised on November 21, 2023.

A research question pinpoints exactly what you want to find out in your work. A good research question is essential to guide your research paper , dissertation , or thesis .

All research questions should be:

  • Focused on a single problem or issue
  • Researchable using primary and/or secondary sources
  • Feasible to answer within the timeframe and practical constraints
  • Specific enough to answer thoroughly
  • Complex enough to develop the answer over the space of a paper or thesis
  • Relevant to your field of study and/or society more broadly

Writing Strong Research Questions

Table of contents

How to write a research question, what makes a strong research question, using sub-questions to strengthen your main research question, research questions quiz, other interesting articles, frequently asked questions about research questions.

You can follow these steps to develop a strong research question:

  • Choose your topic
  • Do some preliminary reading about the current state of the field
  • Narrow your focus to a specific niche
  • Identify the research problem that you will address

The way you frame your question depends on what your research aims to achieve. The table below shows some examples of how you might formulate questions for different purposes.

Research question formulations
Describing and exploring
Explaining and testing
Evaluating and acting is X

Using your research problem to develop your research question

Example research problem Example research question(s)
Teachers at the school do not have the skills to recognize or properly guide gifted children in the classroom. What practical techniques can teachers use to better identify and guide gifted children?
Young people increasingly engage in the “gig economy,” rather than traditional full-time employment. However, it is unclear why they choose to do so. What are the main factors influencing young people’s decisions to engage in the gig economy?

Note that while most research questions can be answered with various types of research , the way you frame your question should help determine your choices.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

research problem examples for students

Research questions anchor your whole project, so it’s important to spend some time refining them. The criteria below can help you evaluate the strength of your research question.

Focused and researchable

Criteria Explanation
Focused on a single topic Your central research question should work together with your research problem to keep your work focused. If you have multiple questions, they should all clearly tie back to your central aim.
Answerable using Your question must be answerable using and/or , or by reading scholarly sources on the to develop your argument. If such data is impossible to access, you likely need to rethink your question.
Not based on value judgements Avoid subjective words like , , and . These do not give clear criteria for answering the question.

Feasible and specific

Criteria Explanation
Answerable within practical constraints Make sure you have enough time and resources to do all research required to answer your question. If it seems you will not be able to gain access to the data you need, consider narrowing down your question to be more specific.
Uses specific, well-defined concepts All the terms you use in the research question should have clear meanings. Avoid vague language, jargon, and too-broad ideas.

Does not demand a conclusive solution, policy, or course of action Research is about informing, not instructing. Even if your project is focused on a practical problem, it should aim to improve understanding rather than demand a ready-made solution.

If ready-made solutions are necessary, consider conducting instead. Action research is a research method that aims to simultaneously investigate an issue as it is solved. In other words, as its name suggests, action research conducts research and takes action at the same time.

Complex and arguable

Criteria Explanation
Cannot be answered with or Closed-ended, / questions are too simple to work as good research questions—they don’t provide enough for robust investigation and discussion.

Cannot be answered with easily-found facts If you can answer the question through a single Google search, book, or article, it is probably not complex enough. A good research question requires original data, synthesis of multiple sources, and original interpretation and argumentation prior to providing an answer.

Relevant and original

Criteria Explanation
Addresses a relevant problem Your research question should be developed based on initial reading around your . It should focus on addressing a problem or gap in the existing knowledge in your field or discipline.
Contributes to a timely social or academic debate The question should aim to contribute to an existing and current debate in your field or in society at large. It should produce knowledge that future researchers or practitioners can later build on.
Has not already been answered You don’t have to ask something that nobody has ever thought of before, but your question should have some aspect of originality. For example, you can focus on a specific location, or explore a new angle.

Chances are that your main research question likely can’t be answered all at once. That’s why sub-questions are important: they allow you to answer your main question in a step-by-step manner.

Good sub-questions should be:

  • Less complex than the main question
  • Focused only on 1 type of research
  • Presented in a logical order

Here are a few examples of descriptive and framing questions:

  • Descriptive: According to current government arguments, how should a European bank tax be implemented?
  • Descriptive: Which countries have a bank tax/levy on financial transactions?
  • Framing: How should a bank tax/levy on financial transactions look at a European level?

Keep in mind that sub-questions are by no means mandatory. They should only be asked if you need the findings to answer your main question. If your main question is simple enough to stand on its own, it’s okay to skip the sub-question part. As a rule of thumb, the more complex your subject, the more sub-questions you’ll need.

Try to limit yourself to 4 or 5 sub-questions, maximum. If you feel you need more than this, it may be indication that your main research question is not sufficiently specific. In this case, it’s is better to revisit your problem statement and try to tighten your main question up.

Prevent plagiarism. Run a free check.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

The way you present your research problem in your introduction varies depending on the nature of your research paper . A research paper that presents a sustained argument will usually encapsulate this argument in a thesis statement .

A research paper designed to present the results of empirical research tends to present a research question that it seeks to answer. It may also include a hypothesis —a prediction that will be confirmed or disproved by your research.

As you cannot possibly read every source related to your topic, it’s important to evaluate sources to assess their relevance. Use preliminary evaluation to determine whether a source is worth examining in more depth.

This involves:

  • Reading abstracts , prefaces, introductions , and conclusions
  • Looking at the table of contents to determine the scope of the work
  • Consulting the index for key terms or the names of important scholars

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (“ x affects y because …”).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses . In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Writing Strong Research Questions

Formulating a main research question can be a difficult task. Overall, your question should contribute to solving the problem that you have defined in your problem statement .

However, it should also fulfill criteria in three main areas:

  • Researchability
  • Feasibility and specificity
  • Relevance and originality

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 21). Writing Strong Research Questions | Criteria & Examples. Scribbr. Retrieved August 27, 2024, from https://www.scribbr.com/research-process/research-questions/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to define a research problem | ideas & examples, how to write a problem statement | guide & examples, 10 research question examples to guide your research project, what is your plagiarism score.

  • Thesis Action Plan New
  • Academic Project Planner

Literature Navigator

Thesis dialogue blueprint, writing wizard's template, research proposal compass.

  • Why students love us
  • Rebels Blog
  • Why we are different
  • All Products
  • Coming Soon

How to Write a Research Problem Example: Step-by-Step Instructions

Writing a research problem is a crucial first step in planning a research paper. A well-defined research problem not only provides clear direction but also ensures that your project addresses a significant gap in the existing knowledge. This article provides a step-by-step guide to help you understand, identify, and articulate a compelling research problem.

Key Takeaways

  • Understanding the concept and importance of a research problem is essential for academic success.
  • Identifying a broad research area and recognizing gaps in existing literature are foundational steps.
  • Narrowing down the research problem involves focusing on specific issues and formulating clear research questions.
  • Crafting a clear problem statement with concise writing techniques enhances the clarity and impact of your research.
  • Aligning the research problem with research objectives and justifying its significance ensures coherence and relevance throughout your proposal.

Understanding the Concept of a Research Problem

A research problem is a clearly defined issue in a particular field of study that requires additional investigation and study to resolve. Once identified, the problem can be succinctly stated to highlight existing knowledge gaps , the importance of solving the research problem, and the difference between a current situation and an improved state.

Identifying a Broad Research Area

Identifying a broad research area is the foundational step in the research process. This stage involves selecting a general topic that piques your interest and has the potential for further exploration. Choosing a broad area of interest allows you to remain flexible and open to various subtopics that may emerge during your preliminary research.

Selecting a General Topic

Begin by identifying a general area of interest. This could be a field you are passionate about or one that aligns with your academic or professional goals. The key is to choose a topic that is broad enough to allow for comprehensive exploration but specific enough to be manageable.

Reviewing Existing Literature

Once you have a general topic in mind, the next step is to review existing literature. This involves conducting a thorough search of academic journals, books, and other scholarly sources to understand the current state of research in your chosen area. Knowing how to find literature is crucial at this stage. Utilize databases, libraries, and online resources to gather relevant information. This will help you identify what has already been studied and where there might be gaps in knowledge.

Recognizing Gaps in Knowledge

After reviewing the literature, you should be able to recognize gaps in the existing research. These gaps represent areas that have not been fully explored or questions that remain unanswered. Identifying these gaps is essential for formulating a research problem that is both original and significant. Use tools for topic selection to help pinpoint these gaps and refine your focus.

By following these steps, you can effectively identify a broad research area that sets the stage for a successful research project.

Narrowing Down the Research Problem

After identifying a general problem area, you need to zero in on the specific aspect you want to analyze further in the context of your research.

Crafting a Clear Problem Statement

Creating a clear problem statement is a critical step in the research process. It serves as the foundation for your entire study, guiding your research questions, methodology, and analysis. A well-crafted problem statement should be concise, specific, and informative.

Contextualizing Your Research Problem

Contextualizing your research problem involves providing the necessary background information to help the reader understand the significance and relevance of your study. This step is crucial as it introduces the reader to the importance of the topic being studied and anchors the research questions, hypotheses, or assumptions to follow. By placing the topic into context, you make it easier to distinguish between the current state and the ideal one in which the issue would not exist.

Aligning the Research Problem with Objectives

Aligning your research problem with your objectives is crucial for ensuring a coherent and focused study. The purpose statement aligns with the problem statement and prompts the research methodology and design. This alignment helps in maintaining a clear direction throughout your research process.

Justifying the Research Problem

When crafting a bachelor thesis , it is crucial to justify the research problem effectively. This section should demonstrate the significance of the problem within your field and address potential criticisms. Establishing the relevance of your research is essential to show why the problem needs to be addressed. This does not mean your research has to be groundbreaking, but it should be researchable, feasible, and clearly address a relevant issue.

Demonstrating the Significance

To demonstrate the significance of your research problem, you need to provide context and background information. Explain where the problem arises and who is affected by it. In theoretical research, review relevant literature to show the gap your study aims to fill. Highlight the practical implications of solving this problem and how it can contribute to your field.

Addressing Potential Criticisms

Anticipate potential criticisms of your research problem and address them proactively. This involves acknowledging any limitations in your study and explaining how you plan to mitigate them. By doing so, you strengthen the credibility of your research and show that you have considered various perspectives.

Supporting with Evidence

Supporting your research problem with evidence is crucial. Use data, statistics, and examples from existing literature to back up your claims. This not only reinforces the importance of your research but also helps in alleviating thesis anxiety by providing a solid foundation for your study.

Integrating the Research Problem into Your Proposal

When integrating the research problem into your proposal, it is crucial to ensure that it is clearly identified and described. This allows the reader to understand the central issues or questions that you intend to address. A research proposal is a concise and coherent summary of your proposed research. It sets out the central issues or questions that you intend to address. This section should be strategically placed to provide a strong foundation for the rest of your proposal.

Reviewing and Refining the Research Problem

Seeking feedback from peers and advisors.

Engaging with peers and advisors is crucial for refining your research problem. Solicit constructive criticism to identify any weaknesses or areas for improvement. This collaborative approach ensures that your research problem is both clear and relevant.

Revising for Clarity and Precision

It’s essential to revise the problem statement in research to maintain specificity and clarity. As new information is discovered, you may need to update your statement to reflect advancements in the research field. This iterative process helps in modifying data collection methods and refining variables.

Final Checklist Before Submission

Before finalizing your research problem, ensure it meets the following criteria:

  • Specificity : Is the problem statement specific enough to guide your research?
  • Clarity : Is the language clear and concise?
  • Relevance : Does it address a significant gap in the existing literature?
  • Feasibility : Can the problem be realistically addressed within the scope of your resources and time?

By following these steps, you can ensure that your research problem is well-defined and ready for inclusion in your proposal.

Reviewing and refining the research problem is a crucial step in your thesis journey. It helps you to narrow down your focus and ensure that your research is both relevant and feasible. If you're feeling overwhelmed and unsure where to start, our step-by-step Thesis Action Plan can guide you through this process with ease. Visit our website to claim your special offer now and take the first step towards a stress-free thesis experience.

In conclusion, writing a well-defined research problem is a critical step in the research process. It serves as the foundation upon which the entire study is built, guiding the research design, methodology, and analysis. By following the step-by-step instructions provided in this article, researchers can ensure that their problem statements are clear, concise, and relevant. This not only enhances the quality and focus of the research but also contributes to the broader field of knowledge. As you embark on your research journey, remember that a meticulously crafted research problem is your compass, steering your study towards meaningful and impactful outcomes.

Frequently Asked Questions

What is a research problem.

A research problem is a specific issue, difficulty, contradiction, or gap in knowledge that you aim to address in your study.

Why is identifying a research problem important?

Identifying a research problem is crucial because it provides a clear focus for your study, ensuring that your research is relevant and addresses a specific need or gap in knowledge.

How do I choose a broad research area?

To choose a broad research area, start by considering your interests, the relevance of the topic to your field, and the availability of resources. Reviewing existing literature can also help you identify gaps in knowledge.

What are common pitfalls in identifying research problems?

Common pitfalls include choosing a problem that is too broad or too narrow, lacking originality, or selecting a problem that is not researchable due to lack of data or resources.

How can I narrow down my research problem?

You can narrow down your research problem by focusing on specific issues within the broad area, formulating precise research questions, and ensuring the topic is relevant and feasible.

What should a problem statement include?

A problem statement should include a clear description of the issue, its context, the specific problem to be addressed, and the significance of the study.

How do I ensure my research problem is aligned with my objectives?

Ensure alignment by setting clear research objectives that directly address the research problem. Regularly evaluate your objectives for clarity and achievability.

What are the practical implications of a research problem?

Practical implications refer to the real-world applications and benefits of addressing the research problem. Highlighting these can demonstrate the significance and impact of your study.

Discovering Statistics Using IBM SPSS Statistics: A Fun and Informative Guide

Discovering Statistics Using IBM SPSS Statistics: A Fun and Informative Guide

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Discovering Statistics Using SAS: A Comprehensive Review

Discovering Statistics Using SAS: A Comprehensive Review

Confident student with laptop and colorful books

Mastering the First Step: How to Start Your Thesis with Confidence

Thesis Revision Made Simple: Techniques for Perfecting Your Academic Work

Thesis Revision Made Simple: Techniques for Perfecting Your Academic Work

Integrating Calm into Your Study Routine: The Power of Mindfulness in Education

Integrating Calm into Your Study Routine: The Power of Mindfulness in Education

Thesis Action Plan

Thesis Action Plan

Research Proposal Compass

How to Determine the Perfect Research Proposal Length

How do i start writing my thesis: a step-by-step guide.

  • Blog Articles
  • Affiliate Program
  • Terms and Conditions
  • Payment and Shipping Terms
  • Privacy Policy
  • Return Policy

© 2024 Research Rebels, All rights reserved.

Your cart is currently empty.

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • The Research Problem/Question
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

A research problem is a definite or clear expression [statement] about an area of concern, a condition to be improved upon, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or within existing practice that points to a need for meaningful understanding and deliberate investigation. A research problem does not state how to do something, offer a vague or broad proposition, or present a value question. In the social and behavioral sciences, studies are most often framed around examining a problem that needs to be understood and resolved in order to improve society and the human condition.

Bryman, Alan. “The Research Question in Social Research: What is its Role?” International Journal of Social Research Methodology 10 (2007): 5-20; Guba, Egon G., and Yvonna S. Lincoln. “Competing Paradigms in Qualitative Research.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, editors. (Thousand Oaks, CA: Sage, 1994), pp. 105-117; Pardede, Parlindungan. “Identifying and Formulating the Research Problem." Research in ELT: Module 4 (October 2018): 1-13; Li, Yanmei, and Sumei Zhang. "Identifying the Research Problem." In Applied Research Methods in Urban and Regional Planning . (Cham, Switzerland: Springer International Publishing, 2022), pp. 13-21.

Importance of...

The purpose of a problem statement is to:

  • Introduce the reader to the importance of the topic being studied . The reader is oriented to the significance of the study.
  • Anchors the research questions, hypotheses, or assumptions to follow . It offers a concise statement about the purpose of your paper.
  • Place the topic into a particular context that defines the parameters of what is to be investigated.
  • Provide the framework for reporting the results and indicates what is probably necessary to conduct the study and explain how the findings will present this information.

In the social sciences, the research problem establishes the means by which you must answer the "So What?" question. This declarative question refers to a research problem surviving the relevancy test [the quality of a measurement procedure that provides repeatability and accuracy]. Note that answering the "So What?" question requires a commitment on your part to not only show that you have reviewed the literature, but that you have thoroughly considered the significance of the research problem and its implications applied to creating new knowledge and understanding or informing practice.

To survive the "So What" question, problem statements should possess the following attributes:

  • Clarity and precision [a well-written statement does not make sweeping generalizations and irresponsible pronouncements; it also does include unspecific determinates like "very" or "giant"],
  • Demonstrate a researchable topic or issue [i.e., feasibility of conducting the study is based upon access to information that can be effectively acquired, gathered, interpreted, synthesized, and understood],
  • Identification of what would be studied, while avoiding the use of value-laden words and terms,
  • Identification of an overarching question or small set of questions accompanied by key factors or variables,
  • Identification of key concepts and terms,
  • Articulation of the study's conceptual boundaries or parameters or limitations,
  • Some generalizability in regards to applicability and bringing results into general use,
  • Conveyance of the study's importance, benefits, and justification [i.e., regardless of the type of research, it is important to demonstrate that the research is not trivial],
  • Does not have unnecessary jargon or overly complex sentence constructions; and,
  • Conveyance of more than the mere gathering of descriptive data providing only a snapshot of the issue or phenomenon under investigation.

Bryman, Alan. “The Research Question in Social Research: What is its Role?” International Journal of Social Research Methodology 10 (2007): 5-20; Brown, Perry J., Allen Dyer, and Ross S. Whaley. "Recreation Research—So What?" Journal of Leisure Research 5 (1973): 16-24; Castellanos, Susie. Critical Writing and Thinking. The Writing Center. Dean of the College. Brown University; Ellis, Timothy J. and Yair Levy Nova. "Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem." Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); Thesis and Purpose Statements. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements. The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements. The Writing Lab and The OWL. Purdue University; Selwyn, Neil. "‘So What?’…A Question that Every Journal Article Needs to Answer." Learning, Media, and Technology 39 (2014): 1-5; Shoket, Mohd. "Research Problem: Identification and Formulation." International Journal of Research 1 (May 2014): 512-518.

Structure and Writing Style

I.  Types and Content

There are four general conceptualizations of a research problem in the social sciences:

  • Casuist Research Problem -- this type of problem relates to the determination of right and wrong in questions of conduct or conscience by analyzing moral dilemmas through the application of general rules and the careful distinction of special cases.
  • Difference Research Problem -- typically asks the question, “Is there a difference between two or more groups or treatments?” This type of problem statement is used when the researcher compares or contrasts two or more phenomena. This a common approach to defining a problem in the clinical social sciences or behavioral sciences.
  • Descriptive Research Problem -- typically asks the question, "what is...?" with the underlying purpose to describe the significance of a situation, state, or existence of a specific phenomenon. This problem is often associated with revealing hidden or understudied issues.
  • Relational Research Problem -- suggests a relationship of some sort between two or more variables to be investigated. The underlying purpose is to investigate specific qualities or characteristics that may be connected in some way.

A problem statement in the social sciences should contain :

  • A lead-in that helps ensure the reader will maintain interest over the study,
  • A declaration of originality [e.g., mentioning a knowledge void or a lack of clarity about a topic that will be revealed in the literature review of prior research],
  • An indication of the central focus of the study [establishing the boundaries of analysis], and
  • An explanation of the study's significance or the benefits to be derived from investigating the research problem.

NOTE:   A statement describing the research problem of your paper should not be viewed as a thesis statement that you may be familiar with from high school. Given the content listed above, a description of the research problem is usually a short paragraph in length.

II.  Sources of Problems for Investigation

The identification of a problem to study can be challenging, not because there's a lack of issues that could be investigated, but due to the challenge of formulating an academically relevant and researchable problem which is unique and does not simply duplicate the work of others. To facilitate how you might select a problem from which to build a research study, consider these sources of inspiration:

Deductions from Theory This relates to deductions made from social philosophy or generalizations embodied in life and in society that the researcher is familiar with. These deductions from human behavior are then placed within an empirical frame of reference through research. From a theory, the researcher can formulate a research problem or hypothesis stating the expected findings in certain empirical situations. The research asks the question: “What relationship between variables will be observed if theory aptly summarizes the state of affairs?” One can then design and carry out a systematic investigation to assess whether empirical data confirm or reject the hypothesis, and hence, the theory.

Interdisciplinary Perspectives Identifying a problem that forms the basis for a research study can come from academic movements and scholarship originating in disciplines outside of your primary area of study. This can be an intellectually stimulating exercise. A review of pertinent literature should include examining research from related disciplines that can reveal new avenues of exploration and analysis. An interdisciplinary approach to selecting a research problem offers an opportunity to construct a more comprehensive understanding of a very complex issue that any single discipline may be able to provide.

Interviewing Practitioners The identification of research problems about particular topics can arise from formal interviews or informal discussions with practitioners who provide insight into new directions for future research and how to make research findings more relevant to practice. Discussions with experts in the field, such as, teachers, social workers, health care providers, lawyers, business leaders, etc., offers the chance to identify practical, “real world” problems that may be understudied or ignored within academic circles. This approach also provides some practical knowledge which may help in the process of designing and conducting your study.

Personal Experience Don't undervalue your everyday experiences or encounters as worthwhile problems for investigation. Think critically about your own experiences and/or frustrations with an issue facing society or related to your community, your neighborhood, your family, or your personal life. This can be derived, for example, from deliberate observations of certain relationships for which there is no clear explanation or witnessing an event that appears harmful to a person or group or that is out of the ordinary.

Relevant Literature The selection of a research problem can be derived from a thorough review of pertinent research associated with your overall area of interest. This may reveal where gaps exist in understanding a topic or where an issue has been understudied. Research may be conducted to: 1) fill such gaps in knowledge; 2) evaluate if the methodologies employed in prior studies can be adapted to solve other problems; or, 3) determine if a similar study could be conducted in a different subject area or applied in a different context or to different study sample [i.e., different setting or different group of people]. Also, authors frequently conclude their studies by noting implications for further research; read the conclusion of pertinent studies because statements about further research can be a valuable source for identifying new problems to investigate. The fact that a researcher has identified a topic worthy of further exploration validates the fact it is worth pursuing.

III.  What Makes a Good Research Statement?

A good problem statement begins by introducing the broad area in which your research is centered, gradually leading the reader to the more specific issues you are investigating. The statement need not be lengthy, but a good research problem should incorporate the following features:

1.  Compelling Topic The problem chosen should be one that motivates you to address it but simple curiosity is not a good enough reason to pursue a research study because this does not indicate significance. The problem that you choose to explore must be important to you, but it must also be viewed as important by your readers and to a the larger academic and/or social community that could be impacted by the results of your study. 2.  Supports Multiple Perspectives The problem must be phrased in a way that avoids dichotomies and instead supports the generation and exploration of multiple perspectives. A general rule of thumb in the social sciences is that a good research problem is one that would generate a variety of viewpoints from a composite audience made up of reasonable people. 3.  Researchability This isn't a real word but it represents an important aspect of creating a good research statement. It seems a bit obvious, but you don't want to find yourself in the midst of investigating a complex research project and realize that you don't have enough prior research to draw from for your analysis. There's nothing inherently wrong with original research, but you must choose research problems that can be supported, in some way, by the resources available to you. If you are not sure if something is researchable, don't assume that it isn't if you don't find information right away--seek help from a librarian !

NOTE:   Do not confuse a research problem with a research topic. A topic is something to read and obtain information about, whereas a problem is something to be solved or framed as a question raised for inquiry, consideration, or solution, or explained as a source of perplexity, distress, or vexation. In short, a research topic is something to be understood; a research problem is something that needs to be investigated.

IV.  Asking Analytical Questions about the Research Problem

Research problems in the social and behavioral sciences are often analyzed around critical questions that must be investigated. These questions can be explicitly listed in the introduction [i.e., "This study addresses three research questions about women's psychological recovery from domestic abuse in multi-generational home settings..."], or, the questions are implied in the text as specific areas of study related to the research problem. Explicitly listing your research questions at the end of your introduction can help in designing a clear roadmap of what you plan to address in your study, whereas, implicitly integrating them into the text of the introduction allows you to create a more compelling narrative around the key issues under investigation. Either approach is appropriate.

The number of questions you attempt to address should be based on the complexity of the problem you are investigating and what areas of inquiry you find most critical to study. Practical considerations, such as, the length of the paper you are writing or the availability of resources to analyze the issue can also factor in how many questions to ask. In general, however, there should be no more than four research questions underpinning a single research problem.

Given this, well-developed analytical questions can focus on any of the following:

  • Highlights a genuine dilemma, area of ambiguity, or point of confusion about a topic open to interpretation by your readers;
  • Yields an answer that is unexpected and not obvious rather than inevitable and self-evident;
  • Provokes meaningful thought or discussion;
  • Raises the visibility of the key ideas or concepts that may be understudied or hidden;
  • Suggests the need for complex analysis or argument rather than a basic description or summary; and,
  • Offers a specific path of inquiry that avoids eliciting generalizations about the problem.

NOTE:   Questions of how and why concerning a research problem often require more analysis than questions about who, what, where, and when. You should still ask yourself these latter questions, however. Thinking introspectively about the who, what, where, and when of a research problem can help ensure that you have thoroughly considered all aspects of the problem under investigation and helps define the scope of the study in relation to the problem.

V.  Mistakes to Avoid

Beware of circular reasoning! Do not state the research problem as simply the absence of the thing you are suggesting. For example, if you propose the following, "The problem in this community is that there is no hospital," this only leads to a research problem where:

  • The need is for a hospital
  • The objective is to create a hospital
  • The method is to plan for building a hospital, and
  • The evaluation is to measure if there is a hospital or not.

This is an example of a research problem that fails the "So What?" test . In this example, the problem does not reveal the relevance of why you are investigating the fact there is no hospital in the community [e.g., perhaps there's a hospital in the community ten miles away]; it does not elucidate the significance of why one should study the fact there is no hospital in the community [e.g., that hospital in the community ten miles away has no emergency room]; the research problem does not offer an intellectual pathway towards adding new knowledge or clarifying prior knowledge [e.g., the county in which there is no hospital already conducted a study about the need for a hospital, but it was conducted ten years ago]; and, the problem does not offer meaningful outcomes that lead to recommendations that can be generalized for other situations or that could suggest areas for further research [e.g., the challenges of building a new hospital serves as a case study for other communities].

Alvesson, Mats and Jörgen Sandberg. “Generating Research Questions Through Problematization.” Academy of Management Review 36 (April 2011): 247-271 ; Choosing and Refining Topics. Writing@CSU. Colorado State University; D'Souza, Victor S. "Use of Induction and Deduction in Research in Social Sciences: An Illustration." Journal of the Indian Law Institute 24 (1982): 655-661; Ellis, Timothy J. and Yair Levy Nova. "Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem." Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); How to Write a Research Question. The Writing Center. George Mason University; Invention: Developing a Thesis Statement. The Reading/Writing Center. Hunter College; Problem Statements PowerPoint Presentation. The Writing Lab and The OWL. Purdue University; Procter, Margaret. Using Thesis Statements. University College Writing Centre. University of Toronto; Shoket, Mohd. "Research Problem: Identification and Formulation." International Journal of Research 1 (May 2014): 512-518; Trochim, William M.K. Problem Formulation. Research Methods Knowledge Base. 2006; Thesis and Purpose Statements. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements. The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements. The Writing Lab and The OWL. Purdue University; Pardede, Parlindungan. “Identifying and Formulating the Research Problem." Research in ELT: Module 4 (October 2018): 1-13; Walk, Kerry. Asking an Analytical Question. [Class handout or worksheet]. Princeton University; White, Patrick. Developing Research Questions: A Guide for Social Scientists . New York: Palgrave McMillan, 2009; Li, Yanmei, and Sumei Zhang. "Identifying the Research Problem." In Applied Research Methods in Urban and Regional Planning . (Cham, Switzerland: Springer International Publishing, 2022), pp. 13-21.

  • << Previous: Background Information
  • Next: Theoretical Framework >>
  • Last Updated: Aug 27, 2024 1:14 PM
  • URL: https://libguides.usc.edu/writingguide

research problem examples for students

Think Like a Researcher: Instruction Resources: #6 Developing Successful Research Questions

  • Guide Organization
  • Overall Summary
  • #1 Think Like a Researcher!
  • #2 How to Read a Scholarly Article
  • #3 Reading for Keywords (CREDO)
  • #4 Using Google for Academic Research
  • #4 Using Google for Academic Research (Alternate)
  • #5 Integrating Sources
  • Research Question Discussion
  • #7 Avoiding Researcher Bias
  • #8 Understanding the Information Cycle
  • #9 Exploring Databases
  • #10 Library Session
  • #11 Post Library Session Activities
  • Summary - Readings
  • Summary - Research Journal Prompts
  • Summary - Key Assignments
  • Jigsaw Readings
  • Permission Form

Course Learning Outcome:   Develop ability to synthesize and express complex ideas; demonstrate information literacy and be able to work with evidence

Goal:  Develop students’ ability to recognize and create successful research questions

Specifically, students will be able to

  • identify the components of a successful research question.
  • create a viable research question.

What Makes a Good Research Topic Handout

These handouts are intended to be used as a discussion generator that will help students develop a solid research topic or question. Many students start with topics that are poorly articulated, too broad, unarguable, or are socially insignificant. Each of these problems may result in a topic that is virtually un-researchable. Starting with a researchable topic is critical to writing an effective paper.

Research shows that students are much more invested in writing when they are able to choose their own topics. However, there is also research to support the notion that students are completely overwhelmed and frustrated when they are given complete freedom to write about whatever they choose. Providing some structure or topic themes that allow students to make bounded choices may be a way mitigate these competing realities.

These handouts can be modified or edited for your purposes.  One can be used as a handout for students while the other can serve as a sample answer key.  The document is best used as part of a process.  For instance, perhaps starting with discussing the issues and potential research questions, moving on to problems and social significance but returning to proposals/solutions at a later date.

  • Research Questions - Handout Key (2 pgs) This document is a condensed version of "What Makes a Good Research Topic". It serves as a key.
  • Research Questions - Handout for Students (2 pgs) This document could be used with a class to discuss sample research questions (are they suitable?) and to have them start thinking about problems, social significance, and solutions for additional sample research questions.
  • Research Question Discussion This tab includes materials for introduction students to research question criteria for a problem/solution essay.

Additional Resources

These documents have similarities to those above.  They represent original documents and conversations about research questions from previous TRAIL trainings.

  • What Makes a Good Research Topic? - Original Handout (4 pgs)
  • What Makes a Good Research Topic? Revised Jan. 2016 (4 pgs)
  • What Makes a Good Research Topic? Revised Jan 2016 with comments

Topic Selection (NCSU Libraries)

Howard, Rebecca Moore, Tricia Serviss, and Tanya K. Rodrigues. " Writing from sources, writing from sentences ." Writing & Pedagogy 2.2 (2010): 177-192.

Research Journal

Assign after students have participated in the Developing Successful Research Topics/Questions Lesson OR have drafted a Research Proposal.

Think about your potential research question.

  • What is the problem that underlies your question?
  • Is the problem of social significance? Explain.
  • Is your proposed solution to the problem feasible? Explain.
  • Do you think there is evidence to support your solution?

Keys for Writers - Additional Resource

Keys for Writers (Raimes and Miller-Cochran) includes a section to guide students in the formation of an arguable claim (thesis).  The authors advise students to avoid the following since they are not debatable. 

  • "a neutral statement, which gives no hint of the writer's position"
  • "an announcement of the paper's broad subject"
  • "a fact, which is not arguable"
  • "a truism (statement that is obviously true)"
  • "a personal or religious conviction that cannot be logically debated"
  • "an opinion based only on your feelings"
  • "a sweeping generalization" (Section 4C, pg. 52)

The book also provides examples and key points (pg. 53) for a good working thesis.

  • << Previous: #5 Integrating Sources
  • Next: Research Question Discussion >>
  • Last Updated: Apr 26, 2024 10:23 AM
  • URL: https://libguides.ucmerced.edu/think_like_a_researcher

University of California, Merced

10 creative research topics for students (2024)

Last updated

25 November 2023

Reviewed by

Miroslav Damyanov

Research is a key part of student life, but deciding which topic to research can take time and effort. The right research topic typically aligns with your skills and interests, has current relevance, and can positively impact the world.

In this article, you’ll find some helpful examples to help you get started.

  • What is a research topic, and what is it for?

Research topics enable students to drill down into a specific aspect of a subject to broaden their knowledge and share learnings with others. They are typically used to make discoveries or develop fresh viewpoints.

A research topic defines the specific theme that research will be conducted around. It’s essential for providing a key focus for the work to be completed. Ultimately, it defines a core problem or knowledge gap that needs to be solved. 

A clear topic helps define what is being studied and how that information will be communicated to others.

  • Research topic vs. research question

A research topic is a broad theme of focus that requires further investigation. It’s the project’s overall subject—an aspect of which will be studied.

A research topic example could be “The effects of meditation on stress reduction.”

A research question is a specific inquiry that researchers want to investigate and answer to broaden their knowledge and make new discoveries. Research questions are much more specific, focusing on a very small aspect of the overall topic.

The right research question will specifically set out what is being researched so there is no ambiguity.

Here’s an example of a research question within the topic: “How does meditation impact stress, anxiety, and burnout in the workplace?”

  • What makes a good research paper topic?

Here are the characteristics that make some topics more favorable and useful than others:

Clarity: a helpful research topic should be clearly understood to ensure the integrity of the research. It should be clear to the student and mentor/professor what the topic is and how it will be explored.

Originality: answering questions that have already been researched and answered many times before could be a waste of resources. Answering original questions is key to getting the most out of research. This might involve researching topics that have already been covered from a different angle or exploring an entirely new topic.

Relevance: it’s helpful to ensure that a research topic is related to your expertise and your access to resources. This will ensure that the research topic is relevant to you.

Ethical : ethics should always be considered when conducting research. Your research shouldn’t cause physical or mental harm to any participants. You should also consider animal and environmental ethics.

  • How can I choose a good topic for my research paper?

With so many topics to choose from, selecting a topic for your research paper can be overwhelming. That’s why it’s a good idea to consider these three points to make the best choice:

1. Lean into personal interest

Being interested and experienced in a particular field will make the research more interesting, relevant, and straightforward to conduct.

Your interest will mean you’re committed and motivated to discover the answer to your research question. Being personally engaged also makes the process more enjoyable.

One caveat to keep in mind is the potential for bias. If you are invested in the research having a particular result, you must ensure it’s accurate, double-checked, and reviewed by an impartial party.

2. Choose a topic with enough information

Your research project might fail if you don’t have access to sufficient information and resources. There needs to be enough information to gain deep insights into the research at hand.

Consider the resources you have within your project limits. If your research has funding, carefully work out what that funding could be used for. If not, you may need to consider research that you’ll be able to complete with access to public records and other free resources.

Timings, finances, access to participants, and publicly accessible information will all need to be considered before choosing the final topic to research.

3. Consider the guidelines

You’ll need to adhere to the specific guidelines that your school, mentor, or professor have laid out. They may request that the topic be related to public interest, a currently challenging topic for the environment, or another parameter.

When considering those guidelines, make ethical considerations. Your school or university is unlikely to permit unethical research.

  • How to find research topics to write about

Even though there’s an endless range of topics to research, you might not know where to begin. Starting with background reading, mind mapping, and speaking with mentors can help mold general ideas into useful topics and questions.

Extensive reading: completing background reading of educational databases, journals, and scientific studies can help provide a good working knowledge of what is currently being researched and identify key gaps.

Social problems: current challenges on both a local and global scale can make excellent research questions. Whether it’s investigating climate change, human health, or the impact of pandemics, there’s likely to be large human interest if you research social problems and challenges. The research you conduct may even have a positive impact on the world around you.

Mind mapping: brainstorming different ideas inspired by your background reading and personal interests can lead to ideal research topics. Create a large mind map, whether in a notebook or on a whiteboard, to get all your ideas down on paper. You may be surprised at what unique ideas you come up with.

Speak to mentors: running topics over with your professor or mentor could prove very helpful. They may be able to help you refine your ideas, provide feedback on research questions, and offer useful suggestions to ensure the topic you pick is appropriate.

  • The top 10 research topics for students

Here are some of the top 10 research topics and research areas for students. Whether in high school, senior high school, or college, these topics are important and relevant for students today.

You might use these ideas as starting points for your own original research topics and research questions.

1. High school research paper topic ideas

Research topics in high school can promote critical thinking , personal growth, and problem-solving skills.

Some of the most relevant research topics for high schoolers revolve around social and political issues, as those are often core topics within the school curriculum. Also, students are often interested in how they can positively impact the world around them, so topics within social change and social issues are particularly relevant.

The impacts of bullying

Bullying and its impacts are an interesting and relevant topic for high school students. Students may want to consider ways to mitigate bullying or explore whether bullying can affect people long-term.

Some specific research questions within the bullying topic are:

What is the evidence that parental support can alleviate the impact of bullying in schools?

What are the effects of bullying and victimization on short-term mental health?

How can we predict adolescents’ bullying participation and understand the participant roles of bullying in different grades?

Social media in high schools

With social media use prolific in the modern world, students may be particularly interested to learn about how it impacts humans. Students may want to research the effects of different social media types, ways to reduce social media use, or how social media is impacting people around the world.

Some topics within social media could be:

Is there a correlation between social media use and academic performance?

What are the effects of social media use on mental health in people aged 12–18?

How does social media use affect self-esteem in students?

2. Psychology research paper topics

Psychology is a broadly studied topic with many possible avenues for exploration. Whether you’d like to understand how the human brain works, ways to boost mental health, or treatment options in psychology, there are endless options.

Here are some of the top 10 research topics for college students in psychology: 

Increasing happiness

Some specific research questions related to happiness include the following:

What are the factors driving the fear of leaning into happiness in American society?

How can practicing vulnerability reduce stress and boost happiness?

What impact does forest bathing have on overall mood scores?

Mitigating anxiety

With 37% of US adults more anxious in 2023 than in 2022, anxiety as a research topic is very relevant.

Below are some example research questions:

How does chronic anxiety impact people’s day-to-day lives?

What is the impact of meditation interventions on anxiety?

Is there data to support physical exercise interventions for anxiety disorders?

3. Science research paper topics

Scientific research covers many study fields. From biology and chemistry to physics and biochemistry, science helps researchers discover critical information about humans and our world.

Here are a few potential topics for exploration:

Reducing pandemic risk

Given the impact of COVID-19, mitigating the risk of a future pandemic is of significant human interest. A student may look at ways to improve pandemic responses, identify future pandemics, boost vaccine adoption, and reduce the spread of misinformation. 

Specific research questions include the following:

How can AI help predict future pandemics?

How does animal breeding contribute to zoonotic disease risk?

What are the key ways to identify and control a potential future pandemic before it becomes widespread?

Renewable energy

With climate change and the planet’s health a major concern for many scientists, investigations into more environmentally friendly and renewable energy sources are of great social interest.

Here are some research questions about renewable energy to consider:

What is the economic feasibility of widespread renewable energy use across the US?

How could wind, water, and solar energy reduce global emissions?

What are the core factors preventing the widespread use of renewable energy?

4. Good environmental research topics

Climate change impacts every person on the planet, so it can make an excellent research topic. Particularly for the younger generation, climate change is an interesting and often concerning discussion topic. Gen Z, for example, speaks much more actively about climate change both on and offline.

Climate change on a global scale

Some specific research questions within the climate change topic are:

What is the impact of climate change on biodiversity in the Amazon rainforest?

What impact could the use of solar power have in the US in relation to carbon emissions?

How do carbon dioxide emissions affect ocean acidity levels?

5. Argumentative research paper topics

Setting out a specific argument and exploring the topic can make for interesting research. Argumentative research topics are typically related to human interest, issues that impact us on a global scale, or challenges that particular social groups face.

Affirmative action

With rising interest in equality, researching affirmative action—designed to prevent the impacts of discrimination—is a relevant research topic for high school and college students.

Some specific questions relating to affirmative action could be:

Does affirmative action promote equality in the workplace?

What is the evidence that affirmative action is helpful in university admissions?

How has the affirmative action ban impacted the tech industry?

The ethical use of AI

AI use is expanding rapidly across the globe, so there’s growing interest in its impacts and the need for ethical usage.

Some research questions relating to AI include the following:

Could AI lead to more global conflict?

Can ethical legislation reduce the risk of AI and its implementation?

How many jobs could be impacted by AI in 2025?

6. Human rights paper topics

Human rights impact everyone on the planet, so it’s a topic that’s of continual interest.

Research in this area could cover human rights in the workplace, privacy rights, gender equality, and much more.

International human rights

International human rights is a complex yet critical area of global interest. Human rights help protect people’s freedom and safety around the world.

What are ways to reduce human rights violations in conflict zones?

What is the impact of organizations such as Amnesty International on international human rights?

In what ways can governments enforce human rights globally?

LGBTQI+ rights

With LGBTQI+ issues gaining a brighter spotlight in mainstream media, research into this area can be very beneficial, not just for those impacted by discrimination but for society as a whole.

Here are some potential research questions:

How can gender dysphoria impact transgender and gender-diverse (TGD) adolescents’ mental health and quality of life?

What are ways to boost mental health for those who experience discrimination due to their sexual orientation or gender identity?

How could genderless bathrooms increase access and safety for LGBTQI+ people?

7. US history research paper topics

The US has a vast and interesting history, which forms part of the curriculum in many high schools and colleges. Different aspects of this history can make relevant fields of research, such as the following:

What factors that led to the abolishment of slavery in the US are relevant in politics today?

How did the Founding Fathers shape the US political system, and what can be learned?

Why did the Louisiana Purchase have such a significant impact on US history?

8. Law enforcement research topics

Maintaining law and order in society is highly complex. Exploring how law enforcement can benefit society as a whole can be a rewarding field of study.

Some possible law enforcement topics include the following:

How can data analysis and intelligence-led policing reduce crime?

What is the role of Crisis Intervention Training in policing?

How can data improve the enforcement of cybersecurity laws?

9. Business research paper topics

Business is a broad area of study with many possible directions for research papers. Business drives the economy, providing jobs and industry. It’s the cornerstone of society, so research in this area is always of social interest. 

Here are some possible business research topics to consider:

How can data analysis impact consumer purchasing decisions?

What are some of the key dilemmas in ethical business practices?

How can diversity and inclusion be boosted in the workforce?

10. Economics research paper topics

Whether you choose to focus on microeconomics, macroeconomics, or applied fields, economics research can take you in many directions.

Below are some general economics paper topics:

What are the widespread impacts of the gig economy?

How can investing in female-founded businesses impact economies in developing countries?

How does progressive taxation impact income inequality?

It all starts with the right research question  

Successful research starts with the right question, regardless of your chosen topic.

Taking time to pose a relevant and clear research question will help you discover new insights, learnings, and evidence.

Research is the very thing that drives human knowledge. Remember, your research might not just impact you but also the world and people around you.

How can I get research ideas?

To come up with research ideas, you might find it helpful to do some background reading, consider current social issues, lean into your skills and interests, and speak to a mentor or professor. Brainstorming and mind mapping can also help.

What is a good research question?

A good research question should be clear, relevant, original, and ethical. You should also have access to the necessary resources to perform the research thoroughly.

How do I create a title for my research topic?

The right title for a research topic is clear and relevant to your field of study. Ideally, it’s an original idea and refers to the specific question you’re posing.

What are some good qualitative research topics?

Qualitative research involves analyzing people’s attitudes, perceptions, and behaviors.

There are qualitative research topics across almost every field of study, including psychology, education, social sciences, human resources, technology, and healthcare.

What qualitative research topics can be good for STEM students?

For STEM (​​science, technology, engineering, and mathematics) students, qualitative research topics could revolve around social impacts and perceptions of science and technology.

Here are some examples:

How the general population views climate change

The potential social impacts of AI

How to use Big Data ethically

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next.

  • It all starts with the right research question

Log in or sign up

Get started for free

APA Acredited Statistics Training

Quantitative Research: Examples of Research Questions and Solutions

Are you ready to embark on a journey into the world of quantitative research? Whether you’re a seasoned researcher or just beginning your academic journey, understanding how to formulate effective research questions is essential for conducting meaningful studies. In this blog post, we’ll explore examples of quantitative research questions across various disciplines and discuss how StatsCamp.org courses can provide the tools and support you need to overcome any challenges you may encounter along the way.

Understanding Quantitative Research Questions

Quantitative research involves collecting and analyzing numerical data to answer research questions and test hypotheses. These questions typically seek to understand the relationships between variables, predict outcomes, or compare groups. Let’s explore some examples of quantitative research questions across different fields:

Examples of quantitative research questions

  • What is the relationship between class size and student academic performance?
  • Does the use of technology in the classroom improve learning outcomes?
  • How does parental involvement affect student achievement?
  • What is the effect of a new drug treatment on reducing blood pressure?
  • Is there a correlation between physical activity levels and the risk of cardiovascular disease?
  • How does socioeconomic status influence access to healthcare services?
  • What factors influence consumer purchasing behavior?
  • Is there a relationship between advertising expenditure and sales revenue?
  • How do demographic variables affect brand loyalty?

Stats Camp: Your Solution to Mastering Quantitative Research Methodologies

At StatsCamp.org, we understand that navigating the complexities of quantitative research can be daunting. That’s why we offer a range of courses designed to equip you with the knowledge and skills you need to excel in your research endeavors. Whether you’re interested in learning about regression analysis, experimental design, or structural equation modeling, our experienced instructors are here to guide you every step of the way.

Bringing Your Own Data

One of the unique features of StatsCamp.org is the opportunity to bring your own data to the learning process. Our instructors provide personalized guidance and support to help you analyze your data effectively and overcome any roadblocks you may encounter. Whether you’re struggling with data cleaning, model specification, or interpretation of results, our team is here to help you succeed.

Courses Offered at StatsCamp.org

  • Latent Profile Analysis Course : Learn how to identify subgroups, or profiles, within a heterogeneous population based on patterns of responses to multiple observed variables.
  • Bayesian Statistics Course : A comprehensive introduction to Bayesian data analysis, a powerful statistical approach for inference and decision-making. Through a series of engaging lectures and hands-on exercises, participants will learn how to apply Bayesian methods to a wide range of research questions and data types.
  • Structural Equation Modeling (SEM) Course : Dive into advanced statistical techniques for modeling complex relationships among variables.
  • Multilevel Modeling Course : A in-depth exploration of this advanced statistical technique, designed to analyze data with nested structures or hierarchies. Whether you’re studying individuals within groups, schools within districts, or any other nested data structure, multilevel modeling provides the tools to account for the dependencies inherent in such data.

As you embark on your journey into quantitative research, remember that StatsCamp.org is here to support you every step of the way. Whether you’re formulating research questions, analyzing data, or interpreting results, our courses provide the knowledge and expertise you need to succeed. Join us today and unlock the power of quantitative research!

Follow Us On Social! Facebook | Instagram | X

Stats Camp Statistical Methods Training

933 San Mateo Blvd NE #500, Albuquerque, NM 87108

4414 82 nd Street #212-121 Lubbock, TX 79424

Monday – Friday: 9:00 AM – 5:00 PM

© Copyright 2003 - 2024 | All Rights Reserved Stats Camp Foundation 501(c)(3) Non-Profit Organization.

research problem examples for students

How to Write a Research Question: Types and Examples 

research quetsion

The first step in any research project is framing the research question. It can be considered the core of any systematic investigation as the research outcomes are tied to asking the right questions. Thus, this primary interrogation point sets the pace for your research as it helps collect relevant and insightful information that ultimately influences your work.   

Typically, the research question guides the stages of inquiry, analysis, and reporting. Depending on the use of quantifiable or quantitative data, research questions are broadly categorized into quantitative or qualitative research questions. Both types of research questions can be used independently or together, considering the overall focus and objectives of your research.  

What is a research question?

A research question is a clear, focused, concise, and arguable question on which your research and writing are centered. 1 It states various aspects of the study, including the population and variables to be studied and the problem the study addresses. These questions also set the boundaries of the study, ensuring cohesion. 

Designing the research question is a dynamic process where the researcher can change or refine the research question as they review related literature and develop a framework for the study. Depending on the scale of your research, the study can include single or multiple research questions. 

A good research question has the following features: 

  • It is relevant to the chosen field of study. 
  • The question posed is arguable and open for debate, requiring synthesizing and analysis of ideas. 
  • It is focused and concisely framed. 
  • A feasible solution is possible within the given practical constraint and timeframe. 

A poorly formulated research question poses several risks. 1   

  • Researchers can adopt an erroneous design. 
  • It can create confusion and hinder the thought process, including developing a clear protocol.  
  • It can jeopardize publication efforts.  
  • It causes difficulty in determining the relevance of the study findings.  
  • It causes difficulty in whether the study fulfils the inclusion criteria for systematic review and meta-analysis. This creates challenges in determining whether additional studies or data collection is needed to answer the question.  
  • Readers may fail to understand the objective of the study. This reduces the likelihood of the study being cited by others. 

Now that you know “What is a research question?”, let’s look at the different types of research questions. 

Types of research questions

Depending on the type of research to be done, research questions can be classified broadly into quantitative, qualitative, or mixed-methods studies. Knowing the type of research helps determine the best type of research question that reflects the direction and epistemological underpinnings of your research. 

The structure and wording of quantitative 2 and qualitative research 3 questions differ significantly. The quantitative study looks at causal relationships, whereas the qualitative study aims at exploring a phenomenon. 

  • Quantitative research questions:  
  • Seeks to investigate social, familial, or educational experiences or processes in a particular context and/or location.  
  • Answers ‘how,’ ‘what,’ or ‘why’ questions. 
  • Investigates connections, relations, or comparisons between independent and dependent variables. 

Quantitative research questions can be further categorized into descriptive, comparative, and relationship, as explained in the Table below. 

 
Descriptive research questions These measure the responses of a study’s population toward a particular question or variable. Common descriptive research questions will begin with “How much?”, “How regularly?”, “What percentage?”, “What time?”, “What is?”   Research question example: How often do you buy mobile apps for learning purposes? 
Comparative research questions These investigate differences between two or more groups for an outcome variable. For instance, the researcher may compare groups with and without a certain variable.   Research question example: What are the differences in attitudes towards online learning between visual and Kinaesthetic learners? 
Relationship research questions These explore and define trends and interactions between two or more variables. These investigate relationships between dependent and independent variables and use words such as “association” or “trends.  Research question example: What is the relationship between disposable income and job satisfaction amongst US residents? 
  • Qualitative research questions  

Qualitative research questions are adaptable, non-directional, and more flexible. It concerns broad areas of research or more specific areas of study to discover, explain, or explore a phenomenon. These are further classified as follows: 

   
Exploratory Questions These question looks to understand something without influencing the results. The aim is to learn more about a topic without attributing bias or preconceived notions.   Research question example: What are people’s thoughts on the new government? 
Experiential questions These questions focus on understanding individuals’ experiences, perspectives, and subjective meanings related to a particular phenomenon. They aim to capture personal experiences and emotions.   Research question example: What are the challenges students face during their transition from school to college? 
Interpretive Questions These questions investigate people in their natural settings to help understand how a group makes sense of shared experiences of a phenomenon.   Research question example: How do you feel about ChatGPT assisting student learning? 
  • Mixed-methods studies  

Mixed-methods studies use both quantitative and qualitative research questions to answer your research question. Mixed methods provide a complete picture than standalone quantitative or qualitative research, as it integrates the benefits of both methods. Mixed methods research is often used in multidisciplinary settings and complex situational or societal research, especially in the behavioral, health, and social science fields. 

What makes a good research question

A good research question should be clear and focused to guide your research. It should synthesize multiple sources to present your unique argument, and should ideally be something that you are interested in. But avoid questions that can be answered in a few factual statements. The following are the main attributes of a good research question. 

  • Specific: The research question should not be a fishing expedition performed in the hopes that some new information will be found that will benefit the researcher. The central research question should work with your research problem to keep your work focused. If using multiple questions, they should all tie back to the central aim. 
  • Measurable: The research question must be answerable using quantitative and/or qualitative data or from scholarly sources to develop your research question. If such data is impossible to access, it is better to rethink your question. 
  • Attainable: Ensure you have enough time and resources to do all research required to answer your question. If it seems you will not be able to gain access to the data you need, consider narrowing down your question to be more specific. 
  • You have the expertise 
  • You have the equipment and resources 
  • Realistic: Developing your research question should be based on initial reading about your topic. It should focus on addressing a problem or gap in the existing knowledge in your field or discipline. 
  • Based on some sort of rational physics 
  • Can be done in a reasonable time frame 
  • Timely: The research question should contribute to an existing and current debate in your field or in society at large. It should produce knowledge that future researchers or practitioners can later build on. 
  • Novel 
  • Based on current technologies. 
  • Important to answer current problems or concerns. 
  • Lead to new directions. 
  • Important: Your question should have some aspect of originality. Incremental research is as important as exploring disruptive technologies. For example, you can focus on a specific location or explore a new angle. 
  • Meaningful whether the answer is “Yes” or “No.” Closed-ended, yes/no questions are too simple to work as good research questions. Such questions do not provide enough scope for robust investigation and discussion. A good research question requires original data, synthesis of multiple sources, and original interpretation and argumentation before providing an answer. 

Steps for developing a good research question

The importance of research questions cannot be understated. When drafting a research question, use the following frameworks to guide the components of your question to ease the process. 4  

  • Determine the requirements: Before constructing a good research question, set your research requirements. What is the purpose? Is it descriptive, comparative, or explorative research? Determining the research aim will help you choose the most appropriate topic and word your question appropriately. 
  • Select a broad research topic: Identify a broader subject area of interest that requires investigation. Techniques such as brainstorming or concept mapping can help identify relevant connections and themes within a broad research topic. For example, how to learn and help students learn. 
  • Perform preliminary investigation: Preliminary research is needed to obtain up-to-date and relevant knowledge on your topic. It also helps identify issues currently being discussed from which information gaps can be identified. 
  • Narrow your focus: Narrow the scope and focus of your research to a specific niche. This involves focusing on gaps in existing knowledge or recent literature or extending or complementing the findings of existing literature. Another approach involves constructing strong research questions that challenge your views or knowledge of the area of study (Example: Is learning consistent with the existing learning theory and research). 
  • Identify the research problem: Once the research question has been framed, one should evaluate it. This is to realize the importance of the research questions and if there is a need for more revising (Example: How do your beliefs on learning theory and research impact your instructional practices). 

How to write a research question

Those struggling to understand how to write a research question, these simple steps can help you simplify the process of writing a research question. 

Topic selection Choose a broad topic, such as “learner support” or “social media influence” for your study. Select topics of interest to make research more enjoyable and stay motivated.  
Preliminary research The goal is to refine and focus your research question. The following strategies can help: Skim various scholarly articles. List subtopics under the main topic. List possible research questions for each subtopic. Consider the scope of research for each of the research questions. Select research questions that are answerable within a specific time and with available resources. If the scope is too large, repeat looking for sub-subtopics.  
Audience When choosing what to base your research on, consider your readers. For college papers, the audience is academic. Ask yourself if your audience may be interested in the topic you are thinking about pursuing. Determining your audience can also help refine the importance of your research question and focus on items related to your defined group.  
Generate potential questions Ask open-ended “how?” and “why?” questions to find a more specific research question. Gap-spotting to identify research limitations, problematization to challenge assumptions made by others, or using personal experiences to draw on issues in your industry can be used to generate questions.  
Review brainstormed questions Evaluate each question to check their effectiveness. Use the FINER model to see if the question meets all the research question criteria.  
Construct the research question Multiple frameworks, such as PICOT and PEA, are available to help structure your research question. The frameworks listed below can help you with the necessary information for generating your research question.  
Framework Attributes of each framework
FINER Feasible 
Interesting 
Novel 
Ethical 
Relevant 
PICOT Population or problem 
Intervention or indicator being studied 
Comparison group 
Outcome of interest 
Time frame of the study  
PEO Population being studied 
Exposure to preexisting conditions 
Outcome of interest  

Sample Research Questions

The following are some bad and good research question examples 

  • Example 1 
Unclear: How does social media affect student growth? 
Clear: What effect does the daily use of Twitter and Facebook have on the career development goals of students? 
Explanation: The first research question is unclear because of the vagueness of “social media” as a concept and the lack of specificity. The second question is specific and focused, and its answer can be discovered through data collection and analysis.  
  • Example 2 
Simple: Has there been an increase in the number of gifted children identified? 
Complex: What practical techniques can teachers use to identify and guide gifted children better? 
Explanation: A simple “yes” or “no” statement easily answers the first research question. The second research question is more complicated and requires the researcher to collect data, perform in-depth data analysis, and form an argument that leads to further discussion. 

References:  

  • Thabane, L., Thomas, T., Ye, C., & Paul, J. (2009). Posing the research question: not so simple.  Canadian Journal of Anesthesia/Journal canadien d’anesthésie ,  56 (1), 71-79. 
  • Rutberg, S., & Bouikidis, C. D. (2018). Focusing on the fundamentals: A simplistic differentiation between qualitative and quantitative research.  Nephrology Nursing Journal ,  45 (2), 209-213. 
  • Kyngäs, H. (2020). Qualitative research and content analysis.  The application of content analysis in nursing science research , 3-11. 
  • Mattick, K., Johnston, J., & de la Croix, A. (2018). How to… write a good research question.  The clinical teacher ,  15 (2), 104-108. 
  • Fandino, W. (2019). Formulating a good research question: Pearls and pitfalls.  Indian Journal of Anaesthesia ,  63 (8), 611. 
  • Richardson, W. S., Wilson, M. C., Nishikawa, J., & Hayward, R. S. (1995). The well-built clinical question: a key to evidence-based decisions.  ACP journal club ,  123 (3), A12-A13 

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Scientific Writing Style Guides Explained
  • Ethical Research Practices For Research with Human Subjects
  • 8 Most Effective Ways to Increase Motivation for Thesis Writing 
  • 6 Tips for Post-Doc Researchers to Take Their Career to the Next Level

Transitive and Intransitive Verbs in the World of Research

Language and grammar rules for academic writing, you may also like, how to cite in apa format (7th edition):..., how to write your research paper in apa..., how to choose a dissertation topic, how to write a phd research proposal, how to write an academic paragraph (step-by-step guide), research funding basics: what should a grant proposal..., how to write the first draft of a..., mla works cited page: format, template & examples, academic editing: how to self-edit academic text with..., measuring academic success: definition & strategies for excellence.

research problem examples for students

Transcription Service for Your Academic Paper

Start Transcription now

Editing & Proofreading for Your Research Paper

Get it proofread now

Online Printing & Binding with Free Express Delivery

Configure binding now

  • Academic essay overview
  • The writing process
  • Structuring academic essays
  • Types of academic essays
  • Academic writing overview
  • Sentence structure
  • Academic writing process
  • Improving your academic writing
  • Titles and headings
  • APA style overview
  • APA citation & referencing
  • APA structure & sections
  • Citation & referencing
  • Structure and sections
  • APA examples overview
  • Commonly used citations
  • Other examples
  • British English vs. American English
  • Chicago style overview
  • Chicago citation & referencing
  • Chicago structure & sections
  • Chicago style examples
  • Citing sources overview
  • Citation format
  • Citation examples
  • College essay overview
  • Application
  • How to write a college essay
  • Types of college essays
  • Commonly confused words
  • Definitions
  • Dissertation overview
  • Dissertation structure & sections
  • Dissertation writing process
  • Graduate school overview
  • Application & admission
  • Study abroad
  • Master degree
  • Harvard referencing overview
  • Language rules overview
  • Grammatical rules & structures
  • Parts of speech
  • Punctuation
  • Methodology overview
  • Analyzing data
  • Experiments
  • Observations
  • Inductive vs. Deductive
  • Qualitative vs. Quantitative
  • Types of validity
  • Types of reliability
  • Sampling methods
  • Theories & Concepts
  • Types of research studies
  • Types of variables
  • MLA style overview
  • MLA examples
  • MLA citation & referencing
  • MLA structure & sections
  • Plagiarism overview
  • Plagiarism checker
  • Types of plagiarism
  • Printing production overview
  • Research bias overview
  • Types of research bias
  • Example sections
  • Types of research papers
  • Research process overview
  • Problem statement
  • Research proposal
  • Research topic
  • Statistics overview
  • Levels of measurment
  • Frequency distribution
  • Measures of central tendency
  • Measures of variability
  • Hypothesis testing
  • Parameters & test statistics
  • Types of distributions
  • Correlation
  • Effect size
  • Hypothesis testing assumptions
  • Types of ANOVAs
  • Types of chi-square
  • Statistical data
  • Statistical models
  • Spelling mistakes
  • Tips overview
  • Academic writing tips
  • Dissertation tips
  • Sources tips
  • Working with sources overview
  • Evaluating sources
  • Finding sources
  • Including sources
  • Types of sources

Your Step to Success

Transcription Service for Your Paper

Printing & Binding with 3D Live Preview

Research Problem – Explanation & Examples

How do you like this article cancel reply.

Save my name, email, and website in this browser for the next time I comment.

Research-problem-Definition

A research problem sets the course of investigation in any research process . It can probe practical issues with the aim of suggesting modifications, or scrutinize theoretical quandaries to augment the current understanding in a discipline.

In this article, we delve into the crucial role of a research problem in the research process, as well as offer guidance on how to properly articulate it to steer your research endeavors.

Inhaltsverzeichnis

  • 1 Research Problem – In a Nutshell
  • 2 Definition: Research problem
  • 3 Why is the research problem important?
  • 4 Step 1: Finding a general research problem area
  • 5 Step 2: Narrowing down the research problem
  • 6 Example of a research problem

Research Problem – In a Nutshell

  • A research problem is an issue that raises concern about a particular topic.
  • Researchers formulate research problems by examining other literature on the topic and assessing the significance and relevance of the problem.
  • Creating a research problem involves an overview of a broad problem area and then narrowing it down to the specifics by creating a framework for the topic.
  • General problem areas used in formulating research problems include workplace and theoretical research.

Definition: Research problem

A research problem is a specific challenge or knowledge gap that sets the foundation for research. It is the primary statement about a topic in a field of study, and the findings from a research undertaking provide solutions to the research problem.

The research problem is the defining statement that informs the sources and methodologies to be applied to find and recommend proposals for the area of contention.

Printing Your Thesis With BachelorPrint

  • High-quality bindings with customizable embossing
  • 3D live preview to check your work before ordering
  • Free express delivery

Configure your binding now!

to the print shop

Why is the research problem important?

Research should adopt a precise approach for analysis to be relevant and applicable in a real-world context. Researchers can pick any area of study, and in most cases, the topic in question will have a broad scope; a well-formulated problem forms the basis of a strong research paper which illustrates a clear focus.

Writing a research problem is the first step in planning for a research paper, and a well-structured problem prevents a runaway project that lacks a clear direction.

Step 1: Finding a general research problem area

Your primary goal should be to find gaps and meaningful ways your research project offers a solution to a problem or broadens the knowledge bank in the field.

A good approach is to read and hold discussions about the topic , identify areas with insufficient information, highlight areas of contention and form more in-depth conclusions in under-researched areas.

Workplace research

You can carry out workplace research using a practical approach . This aims to identify a problem by analyzing reports, engaging with people in the organization or field of interest, and examining previous research. Some pointers include:

  • Efficiency and performance-related issues within an organization.
  • Areas or processes that can be improved in the organization.
  • Matters of concern among professionals in the field of study.
  • Challenges faced by identifiable groups in society.
  • Crime in a particular region has been decreasing compared to the rest of the country.
  • Stores in one location of a chain have been reporting lower sales in contrast with others in other parts of the country.
  • One subsidiary of a company is experiencing high staff turnover, affecting the group’s bottom line.

In theoretical research , researchers aim to offer new insights which contribute to the larger knowledge body in the field rather than proposing change. You can formulate a problem by studying recent studies, debates, and theories to identify gaps. Identifying a research problem in theoretical research may examine the following:

  • A context or phenomenon that has not been extensively studied.
  • A contrast between two or more thought patterns.
  • A position that is not clearly understood.
  • A bothersome scenario or question that remains unsolved.

Theoretical problems don’t focus on solving a practical problem but have practical implications in their field. Many theoretical frameworks offer a guide to other practical and applied research scenarios.

  • The relationship between genetics and mental issues in adulthood is not clearly understood.
  • The effects of racial differences in long-term relationships are yet to be investigated in the modern dating scene.
  • Social scientists disagree on the impact of neocolonialism on the socio-economic conditions of black people.

Step 2: Narrowing down the research problem

After identifying a general problem area, you need to zero in on the specific aspect you want to analyze further in the context of your research.

The problem can be narrowed down using the following criteria to create a relevant problem whose solutions adequately answer the research questions . Some questions you can ask to understand the contextual framework of the research problem include:

These may be distinguished by age, location, race, religion, and other metrics that apply to the topic.
Is it an ongoing concern, or is it a new problem?
Has any research been done on the matter? How do existing views concur or differ with your initial presumptions?
Which recommendations have been made by other scholars and researchers?
Do they offer any useful questions, and what gaps can you identify?

Significance

Evaluating the significance of a research problem is a necessary step for identifying issues that contribute to the solution of an issue. There are several ways of determining the significance of a research problem. The following questions can help you to evaluate the significance and relevance of a proposed research problem:

  • Which area, group or time do you plan to situate your study?
  • What attributes will you examine?
  • What is the repercussion of not solving the problem?
  • Who stands to benefit if the problem is resolved?

Example of a research problem

A fashion retail chain is attempting to increase the number of visitors to its stores, but the management is unaware of the measures to achieve this.

To improve its sales and compete with other chains, the chain requires research into ways of increasing traffic in its stores.

By narrowing down the research problem, you can create the problem statement , hypothesis , and relevant research questions .

What is an example of a research problem?

There has been an upward trend in the immigration of professionals from other countries to the UK. Research is needed to determine the likely causes and effects.

How do you formulate a research problem?

Begin by examining available sources and previous research on your topic of interest. You can narrow down the scope from the literature or observable phenomenon and focus on under-researched areas.

How can you determine the significance of a research problem?

Investigate the specific aspects you would like to investigate. Furthermore, you can determine the consequences of the problem remaining unresolved and the biggest beneficiaries if a solution is found.

What is the context in a research problem?

Context refers to the nature of the problem. It entails studying existing work on the issue, who is affected by it, and the proposed solutions.

Extremely satisfied, excellent deal with delivery in less than 24h. The print...

We use cookies on our website. Some of them are essential, while others help us to improve this website and your experience.

  • External Media

Individual Privacy Preferences

Cookie Details Privacy Policy Imprint

Here you will find an overview of all cookies used. You can give your consent to whole categories or display further information and select certain cookies.

Accept all Save

Essential cookies enable basic functions and are necessary for the proper function of the website.

Show Cookie Information Hide Cookie Information

Name
Anbieter Eigentümer dieser Website,
Zweck Speichert die Einstellungen der Besucher, die in der Cookie Box von Borlabs Cookie ausgewählt wurden.
Cookie Name borlabs-cookie
Cookie Laufzeit 1 Jahr
Name
Anbieter Bachelorprint
Zweck Erkennt das Herkunftsland und leitet zur entsprechenden Sprachversion um.
Datenschutzerklärung
Host(s) ip-api.com
Cookie Name georedirect
Cookie Laufzeit 1 Jahr
Name
Anbieter Playcanvas
Zweck Display our 3D product animations
Datenschutzerklärung
Host(s) playcanv.as, playcanvas.as, playcanvas.com
Cookie Laufzeit 1 Jahr

Statistics cookies collect information anonymously. This information helps us to understand how our visitors use our website.

Akzeptieren
Name
Anbieter Google Ireland Limited, Gordon House, Barrow Street, Dublin 4, Ireland
Zweck Cookie von Google zur Steuerung der erweiterten Script- und Ereignisbehandlung.
Datenschutzerklärung
Cookie Name _ga,_gat,_gid
Cookie Laufzeit 2 Jahre

Content from video platforms and social media platforms is blocked by default. If External Media cookies are accepted, access to those contents no longer requires manual consent.

Akzeptieren
Name
Anbieter Meta Platforms Ireland Limited, 4 Grand Canal Square, Dublin 2, Ireland
Zweck Wird verwendet, um Facebook-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) .facebook.com
Akzeptieren
Name
Anbieter Google Ireland Limited, Gordon House, Barrow Street, Dublin 4, Ireland
Zweck Wird zum Entsperren von Google Maps-Inhalten verwendet.
Datenschutzerklärung
Host(s) .google.com
Cookie Name NID
Cookie Laufzeit 6 Monate
Akzeptieren
Name
Anbieter Meta Platforms Ireland Limited, 4 Grand Canal Square, Dublin 2, Ireland
Zweck Wird verwendet, um Instagram-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) .instagram.com
Cookie Name pigeon_state
Cookie Laufzeit Sitzung
Akzeptieren
Name
Anbieter Openstreetmap Foundation, St John’s Innovation Centre, Cowley Road, Cambridge CB4 0WS, United Kingdom
Zweck Wird verwendet, um OpenStreetMap-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) .openstreetmap.org
Cookie Name _osm_location, _osm_session, _osm_totp_token, _osm_welcome, _pk_id., _pk_ref., _pk_ses., qos_token
Cookie Laufzeit 1-10 Jahre
Akzeptieren
Name
Anbieter Twitter International Company, One Cumberland Place, Fenian Street, Dublin 2, D02 AX07, Ireland
Zweck Wird verwendet, um Twitter-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) .twimg.com, .twitter.com
Cookie Name __widgetsettings, local_storage_support_test
Cookie Laufzeit Unbegrenzt
Akzeptieren
Name
Anbieter Vimeo Inc., 555 West 18th Street, New York, New York 10011, USA
Zweck Wird verwendet, um Vimeo-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) player.vimeo.com
Cookie Name vuid
Cookie Laufzeit 2 Jahre
Akzeptieren
Name
Anbieter Google Ireland Limited, Gordon House, Barrow Street, Dublin 4, Ireland
Zweck Wird verwendet, um YouTube-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) google.com
Cookie Name NID
Cookie Laufzeit 6 Monate

Privacy Policy Imprint

research problem examples for students

Research Aims, Objectives & Questions

The “Golden Thread” Explained Simply (+ Examples)

By: David Phair (PhD) and Alexandra Shaeffer (PhD) | June 2022

The research aims , objectives and research questions (collectively called the “golden thread”) are arguably the most important thing you need to get right when you’re crafting a research proposal , dissertation or thesis . We receive questions almost every day about this “holy trinity” of research and there’s certainly a lot of confusion out there, so we’ve crafted this post to help you navigate your way through the fog.

Overview: The Golden Thread

  • What is the golden thread
  • What are research aims ( examples )
  • What are research objectives ( examples )
  • What are research questions ( examples )
  • The importance of alignment in the golden thread

What is the “golden thread”?  

The golden thread simply refers to the collective research aims , research objectives , and research questions for any given project (i.e., a dissertation, thesis, or research paper ). These three elements are bundled together because it’s extremely important that they align with each other, and that the entire research project aligns with them.

Importantly, the golden thread needs to weave its way through the entirety of any research project , from start to end. In other words, it needs to be very clearly defined right at the beginning of the project (the topic ideation and proposal stage) and it needs to inform almost every decision throughout the rest of the project. For example, your research design and methodology will be heavily influenced by the golden thread (we’ll explain this in more detail later), as well as your literature review.

The research aims, objectives and research questions (the golden thread) define the focus and scope ( the delimitations ) of your research project. In other words, they help ringfence your dissertation or thesis to a relatively narrow domain, so that you can “go deep” and really dig into a specific problem or opportunity. They also help keep you on track , as they act as a litmus test for relevance. In other words, if you’re ever unsure whether to include something in your document, simply ask yourself the question, “does this contribute toward my research aims, objectives or questions?”. If it doesn’t, chances are you can drop it.

Alright, enough of the fluffy, conceptual stuff. Let’s get down to business and look at what exactly the research aims, objectives and questions are and outline a few examples to bring these concepts to life.

Free Webinar: How To Find A Dissertation Research Topic

Research Aims: What are they?

Simply put, the research aim(s) is a statement that reflects the broad overarching goal (s) of the research project. Research aims are fairly high-level (low resolution) as they outline the general direction of the research and what it’s trying to achieve .

Research Aims: Examples  

True to the name, research aims usually start with the wording “this research aims to…”, “this research seeks to…”, and so on. For example:

“This research aims to explore employee experiences of digital transformation in retail HR.”   “This study sets out to assess the interaction between student support and self-care on well-being in engineering graduate students”  

As you can see, these research aims provide a high-level description of what the study is about and what it seeks to achieve. They’re not hyper-specific or action-oriented, but they’re clear about what the study’s focus is and what is being investigated.

Need a helping hand?

research problem examples for students

Research Objectives: What are they?

The research objectives take the research aims and make them more practical and actionable . In other words, the research objectives showcase the steps that the researcher will take to achieve the research aims.

The research objectives need to be far more specific (higher resolution) and actionable than the research aims. In fact, it’s always a good idea to craft your research objectives using the “SMART” criteria. In other words, they should be specific, measurable, achievable, relevant and time-bound”.

Research Objectives: Examples  

Let’s look at two examples of research objectives. We’ll stick with the topic and research aims we mentioned previously.  

For the digital transformation topic:

To observe the retail HR employees throughout the digital transformation. To assess employee perceptions of digital transformation in retail HR. To identify the barriers and facilitators of digital transformation in retail HR.

And for the student wellness topic:

To determine whether student self-care predicts the well-being score of engineering graduate students. To determine whether student support predicts the well-being score of engineering students. To assess the interaction between student self-care and student support when predicting well-being in engineering graduate students.

  As you can see, these research objectives clearly align with the previously mentioned research aims and effectively translate the low-resolution aims into (comparatively) higher-resolution objectives and action points . They give the research project a clear focus and present something that resembles a research-based “to-do” list.

The research objectives detail the specific steps that you, as the researcher, will take to achieve the research aims you laid out.

Research Questions: What are they?

Finally, we arrive at the all-important research questions. The research questions are, as the name suggests, the key questions that your study will seek to answer . Simply put, they are the core purpose of your dissertation, thesis, or research project. You’ll present them at the beginning of your document (either in the introduction chapter or literature review chapter) and you’ll answer them at the end of your document (typically in the discussion and conclusion chapters).  

The research questions will be the driving force throughout the research process. For example, in the literature review chapter, you’ll assess the relevance of any given resource based on whether it helps you move towards answering your research questions. Similarly, your methodology and research design will be heavily influenced by the nature of your research questions. For instance, research questions that are exploratory in nature will usually make use of a qualitative approach, whereas questions that relate to measurement or relationship testing will make use of a quantitative approach.  

Let’s look at some examples of research questions to make this more tangible.

Research Questions: Examples  

Again, we’ll stick with the research aims and research objectives we mentioned previously.  

For the digital transformation topic (which would be qualitative in nature):

How do employees perceive digital transformation in retail HR? What are the barriers and facilitators of digital transformation in retail HR?  

And for the student wellness topic (which would be quantitative in nature):

Does student self-care predict the well-being scores of engineering graduate students? Does student support predict the well-being scores of engineering students? Do student self-care and student support interact when predicting well-being in engineering graduate students?  

You’ll probably notice that there’s quite a formulaic approach to this. In other words, the research questions are basically the research objectives “converted” into question format. While that is true most of the time, it’s not always the case. For example, the first research objective for the digital transformation topic was more or less a step on the path toward the other objectives, and as such, it didn’t warrant its own research question.  

So, don’t rush your research questions and sloppily reword your objectives as questions. Carefully think about what exactly you’re trying to achieve (i.e. your research aim) and the objectives you’ve set out, then craft a set of well-aligned research questions . Also, keep in mind that this can be a somewhat iterative process , where you go back and tweak research objectives and aims to ensure tight alignment throughout the golden thread.

The importance of strong alignment 

Alignment is the keyword here and we have to stress its importance . Simply put, you need to make sure that there is a very tight alignment between all three pieces of the golden thread. If your research aims and research questions don’t align, for example, your project will be pulling in different directions and will lack focus . This is a common problem students face and can cause many headaches (and tears), so be warned.

Take the time to carefully craft your research aims, objectives and research questions before you run off down the research path. Ideally, get your research supervisor/advisor to review and comment on your golden thread before you invest significant time into your project, and certainly before you start collecting data .  

Recap: The golden thread

In this post, we unpacked the golden thread of research, consisting of the research aims , research objectives and research questions . You can jump back to any section using the links below.

As always, feel free to leave a comment below – we always love to hear from you. Also, if you’re interested in 1-on-1 support, take a look at our private coaching service here.

research problem examples for students

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

41 Comments

Isaac Levi

Thank you very much for your great effort put. As an Undergraduate taking Demographic Research & Methodology, I’ve been trying so hard to understand clearly what is a Research Question, Research Aim and the Objectives in a research and the relationship between them etc. But as for now I’m thankful that you’ve solved my problem.

Hatimu Bah

Well appreciated. This has helped me greatly in doing my dissertation.

Dr. Abdallah Kheri

An so delighted with this wonderful information thank you a lot.

so impressive i have benefited a lot looking forward to learn more on research.

Ekwunife, Chukwunonso Onyeka Steve

I am very happy to have carefully gone through this well researched article.

Infact,I used to be phobia about anything research, because of my poor understanding of the concepts.

Now,I get to know that my research question is the same as my research objective(s) rephrased in question format.

I please I would need a follow up on the subject,as I intends to join the team of researchers. Thanks once again.

Tosin

Thanks so much. This was really helpful.

Ishmael

I know you pepole have tried to break things into more understandable and easy format. And God bless you. Keep it up

sylas

i found this document so useful towards my study in research methods. thanks so much.

Michael L. Andrion

This is my 2nd read topic in your course and I should commend the simplified explanations of each part. I’m beginning to understand and absorb the use of each part of a dissertation/thesis. I’ll keep on reading your free course and might be able to avail the training course! Kudos!

Scarlett

Thank you! Better put that my lecture and helped to easily understand the basics which I feel often get brushed over when beginning dissertation work.

Enoch Tindiwegi

This is quite helpful. I like how the Golden thread has been explained and the needed alignment.

Sora Dido Boru

This is quite helpful. I really appreciate!

Chulyork

The article made it simple for researcher students to differentiate between three concepts.

Afowosire Wasiu Adekunle

Very innovative and educational in approach to conducting research.

Sàlihu Abubakar Dayyabu

I am very impressed with all these terminology, as I am a fresh student for post graduate, I am highly guided and I promised to continue making consultation when the need arise. Thanks a lot.

Mohammed Shamsudeen

A very helpful piece. thanks, I really appreciate it .

Sonam Jyrwa

Very well explained, and it might be helpful to many people like me.

JB

Wish i had found this (and other) resource(s) at the beginning of my PhD journey… not in my writing up year… 😩 Anyways… just a quick question as i’m having some issues ordering my “golden thread”…. does it matter in what order you mention them? i.e., is it always first aims, then objectives, and finally the questions? or can you first mention the research questions and then the aims and objectives?

UN

Thank you for a very simple explanation that builds upon the concepts in a very logical manner. Just prior to this, I read the research hypothesis article, which was equally very good. This met my primary objective.

My secondary objective was to understand the difference between research questions and research hypothesis, and in which context to use which one. However, I am still not clear on this. Can you kindly please guide?

Derek Jansen

In research, a research question is a clear and specific inquiry that the researcher wants to answer, while a research hypothesis is a tentative statement or prediction about the relationship between variables or the expected outcome of the study. Research questions are broader and guide the overall study, while hypotheses are specific and testable statements used in quantitative research. Research questions identify the problem, while hypotheses provide a focus for testing in the study.

Saen Fanai

Exactly what I need in this research journey, I look forward to more of your coaching videos.

Abubakar Rofiat Opeyemi

This helped a lot. Thanks so much for the effort put into explaining it.

Lamin Tarawally

What data source in writing dissertation/Thesis requires?

What is data source covers when writing dessertation/thesis

Latifat Muhammed

This is quite useful thanks

Yetunde

I’m excited and thankful. I got so much value which will help me progress in my thesis.

Amer Al-Rashid

where are the locations of the reserch statement, research objective and research question in a reserach paper? Can you write an ouline that defines their places in the researh paper?

Webby

Very helpful and important tips on Aims, Objectives and Questions.

Refiloe Raselane

Thank you so much for making research aim, research objectives and research question so clear. This will be helpful to me as i continue with my thesis.

Annabelle Roda-Dafielmoto

Thanks much for this content. I learned a lot. And I am inspired to learn more. I am still struggling with my preparation for dissertation outline/proposal. But I consistently follow contents and tutorials and the new FB of GRAD Coach. Hope to really become confident in writing my dissertation and successfully defend it.

Joe

As a researcher and lecturer, I find splitting research goals into research aims, objectives, and questions is unnecessarily bureaucratic and confusing for students. For most biomedical research projects, including ‘real research’, 1-3 research questions will suffice (numbers may differ by discipline).

Abdella

Awesome! Very important resources and presented in an informative way to easily understand the golden thread. Indeed, thank you so much.

Sheikh

Well explained

New Growth Care Group

The blog article on research aims, objectives, and questions by Grad Coach is a clear and insightful guide that aligns with my experiences in academic research. The article effectively breaks down the often complex concepts of research aims and objectives, providing a straightforward and accessible explanation. Drawing from my own research endeavors, I appreciate the practical tips offered, such as the need for specificity and clarity when formulating research questions. The article serves as a valuable resource for students and researchers, offering a concise roadmap for crafting well-defined research goals and objectives. Whether you’re a novice or an experienced researcher, this article provides practical insights that contribute to the foundational aspects of a successful research endeavor.

yaikobe

A great thanks for you. it is really amazing explanation. I grasp a lot and one step up to research knowledge.

UMAR SALEH

I really found these tips helpful. Thank you very much Grad Coach.

Rahma D.

I found this article helpful. Thanks for sharing this.

Juhaida

thank you so much, the explanation and examples are really helpful

BhikkuPanna

This is a well researched and superbly written article for learners of research methods at all levels in the research topic from conceptualization to research findings and conclusions. I highly recommend this material to university graduate students. As an instructor of advanced research methods for PhD students, I have confirmed that I was giving the right guidelines for the degree they are undertaking.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Educational resources and simple solutions for your research journey

What is a Problem Statement in Research?

What is a Problem Statement in Research? How to Write It with Examples

The question, “What is a research problem statement?” is usually followed by “Why should I care about problem statements, and how can it affect my research?” In this article, we will try to simplify the concept so that you not only grasp its meaning but internalize its importance and learn how to craft a problem statement.

To put it simply, a “problem statement” as the name implies is any statement that describes a problem in research. When you conduct a study, your aim as a researcher is to answer a query or resolve a problem. This learned information is then typically disseminated by writing a research paper that details the entire process for readers (both for experts and the general public). To better grasp this concept, we’ll try to explain what a research problem statement is from the viewpoint of a reader. For the purpose of clarity and brevity the topic is divided into subsections.

Table of Contents

What is a research problem?

A research problem is a clearly defined issue in a particular field of study that requires additional investigation and study to resolve. Once identified, the problem can be succinctly stated to highlight existing knowledge gaps, the importance of solving the research problem, and the difference between a current situation and an improved state.

But why is it important to have a research problem ready? Keep in mind that a good research problem helps you define the main concepts and terms of research that not only guide your study but help you add to or update existing literature. A research problem statement should ideally be clear, precise, and tangible enough to assist you in developing a framework for establishing the objectives, techniques, and analysis of the research project. Hence, any research project, if it is to be completed successfully,  must start with a well-defined research problem.

research problem examples for students

What is research problem statement?

A research problem statement in research writing is the most crucial component of any study, which the researcher must perfect for a variety of reasons, including to get funding and boost readership. We’ve already established that a research article’s “research problem” is a sentence that expresses the specific problem that the research is addressing. But first, let’s discuss the significance of the problem statement in research and how to formulate one, using a few examples.

Do you recall the thoughts that went through your head the last time you read a study article? Have you ever tried to quickly scan the introduction or background of the research article to get a sense of the context and the exact issue the authors were attempting to address through the study? Were you stuck attempting to pinpoint the key sentence(s) that encapsulates the background and context of the study, the motivation behind its initial conduct, and its goals? A research problem statement is the descriptive statement which conveys the issue a researcher is trying to address through the study with the aim of informing the reader the context and significance of performing the study at hand . The research problem statement is crucial for researchers to focus on a particular component of a vast field of study, and for readers to comprehend the significance of the research. A well-defined problem allows you to create a framework to develop research objectives or hypotheses.

Now that we are aware of the significance of a problem statement in research, we can concentrate on creating one that is compelling. Writing a problem statement is a fairly simple process; first, you select a broad topic or research area based on your expertise and the resources at your disposal. Then, you narrow it down to a specific research question or problem relevant to that area of research while keeping the gaps in existing knowledge in mind. To give you a step-by-step instruction on how to write a problem statement for research proposal we’ve broken the process down into sections discussing individual aspects.

When to write a problem statement?

The placement of the research problem in the research project is another crucial component when developing a problem statement. Since the research problem statement is fundamental to writing any research project, it is best to write it at the start of the research process, before experimental setup, data collection, and analysis. Without identifying a specific research problem, you don’t know what exactly you are trying to address through the research so it would not be possible for you to set up the right conditions and foundation for the research project.

It is important to describe the research problem statement at the beginning of the research process to guide the research design and methodology. Another benefit of having a clear and defined research problem early on is that it helps researchers stay on track and focus on the problem at hand without deviating into other trajectories. Writing down the research problem statement also ensures that the current study is relevant, fitting, and fills a knowledge gap. However, note that a research statement can be refined or modified as the research advances and new information becomes available. This could be anything from further deconstructing a specific query to posing a fresh query related to the selected topic area. In fact, it is common practice to revise the problem statement in research to maintain specificity and clarity and to allow room to reflect advancement in the research field.

Bonus point:

A well-defined research problem statement that is referenced in the proper position in the research proposal/article is crucial to effectively communicate the goal and significance of the study to all stakeholders concerned with the research. It piques the reader’s interest in the research area, which can advance the work in several ways and open up future partnerships and even employment opportunities for authors.

What does a research problem statement include?

If you have to create a problem statement from scratch, follow the steps/important aspects listed below to create a well-defined research problem statement.

  • Describe the wide-ranging research topics

To put things in perspective, it is important to first describe the background of the research issue, which derives from a broad area of study or interest that the research project is concerned with.

  • Talk about the research problem/issue

As mentioned earlier, it’s important to state the problem or issues that the research project seeks to address in a clear, succinct manner, preferably in a sentence or two to set the premise of the entire study.

  • Emphasize the importance of the issue

After defining the problem your research will try to solve, explain why it’s significant in the larger context and how your study aims to close the knowledge gap between the current state of knowledge and the ideal scenario.

  • Outline research questions to address the issue

Give a brief description of the list of research questions your study will use to solve the problem at hand and explain how these will address various components of the problem statement.

  • Specify the key goals of the research project

Next, carefully define a set of specific and measurable research objectives that the research project aims to address.

  • Describe the experimental setup

Be sure to include a description of the experimental design, including the intended sample (population/size), setting, or context in the problem statement.

  • Discuss the theoretical framework

Mention the numerous theoretical ideas and precepts necessary to comprehend the study issue and guide the research activity in this section.

  • Include the research methodology

To provide a clear and concise research framework, add a brief description of the research methodologies, including collection and analysis of data, which will be needed to address the research questions and objectives.

Characteristics of a research problem statement

It is essential for a research statement to be clear and concise so that it can guide the development of the research project. A good research statement also helps other stakeholders in comprehending the scope and relevance of the research, which could further lead to opportunities for collaboration or exploration. Here is a list of the key characteristics of a research problem that you should keep in mind when writing an effective research problem statement.

  • The “need” to resolve the issue must be present.

It is not enough to choose a problem in your area of interest and expertise; the research problem should have larger implications for a population or a specific subset. Unless the significance of the research problem is elaborated in detail, the research is not deemed significant. Hence, mentioning the “need” to conduct the research in the context of the subject area and how it will create a difference is of utmost importance.

  • The research problem needs to be presented rationally and clearly

The research statement must be written at the start and be simple enough for even researchers outside the subject area to understand. The two fundamental elements of a successful research problem statement are clarity and specificity. So, check and rewrite your research problem statement if your peers have trouble understanding it. Aim to write in a straightforward manner while addressing all relevant issues and coherent arguments.

  • The research issue is supported by facts and evidence

Before you begin writing the problem statement, you must collect all relevant information available to gain a better understanding of the research topic and existing gaps. A thorough literature search will give you an idea about the current situation and the specific questions you need to ask to close any knowledge gaps. This will also prevent you from asking the questions or identifying issues that have already been addressed. Also, the problem statement should be based on facts and data and should not depend upon hypothetical events.

  • The research problem should generate more research questions

Ideally, the research problem should be such that it helps advance research and encourage more questions. The new questions could be specific to the research that highlights different components or aspects of the problem. These questions must also aid in addressing the problem in a more comprehensive manner which provides a solid foundation for the research study.

  • The research problem should be tangible

The research issue should be concrete, which means that the study project’s budget and time constraints should be met. The research problem should not call for any actions and experiments that are impractical or outside of your area of competence.

To summarize the main characteristics of a research problem statement, it must:

  • Address the knowledge gap
  • Be current and relevant
  • Aids in advancing the field
  • Support future research
  • Be tangible and should suit researcher’s time and interest
  • Be based on facts and data

  How to write a problem statement in research proposal

The format of a problem statement might vary based on the nature and subject of the research; there is no set format. It is typically written in clear, concise sentences and can range from a few sentences to a few pages. Three considerations must be made when formulating a problem statement for a research proposal:

  • Context: The research problem statement needs to be created in the right setting with sufficient background information on the research topic. Context makes it easier to distinguish between the current state and the ideal one in which the issue would not exist. In this section, you can also include instances of any prior attempts and significant roadblocks to solving the problem.
  • Relevance: The main goal of the researcher here is to highlight the relevance of the research study. Explain how the research problem affects society or the field of research and, if the study is conducted to mitigate the issue, what an ideal scenario would look like. Who your study will most affect if the issue is resolved and how it can impact future research are other arguments that might be made in this section.
  • Strategy: Be sure to mention the goals and objectives of your research, and your approach to solve the problem. The purpose of this section is to lay out the research approach for tackling various parts of the research subject.

Examples of problem statement in research proposal

To put what we learned into practice, let’s look at an example of a problem statement in a research report. Suppose you decide to conduct a study on the topic of attention span of different generations. After a thorough literature search you concluded that the attention span of university students is reducing over generations compared to the previous one, even though there are many websites and apps to simplify tasks and make learning easy . This decrease in attention span is attributed to constant exposure to digital content and multiple screens.

In this scenario, the problem statement could be written as – “The problem this study addresses is the lack of regulative measures to control consumption of digital content by young university students, which negatively impacts their attention span”. The research’s goals and objectives, which may employ strategies to increase university students’ attention span by limiting their internet exposure, can then be described in more detail in subsequent paragraphs.

Frequently asked questions

What is a problem statement.

A problem statement is a succinct and unambiguous overview of the research issue that the study is trying to solve.

What is the difference between problem statement and thesis statement?

A problem statement is different from a thesis statement in that the former highlights the main points of a research paper while emphasizing the hypothesis, whilst the latter identifies the issue for which research is being done.

Why is a problem statement needed in a research proposal?

A problem statement identifies the specific problem that the researchers are trying to solve through their research. It is necessary to establish a framework for the project, focus the researcher’s attention, and inform stakeholders of the study’s importance.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

research funding sources

What are the Best Research Funding Sources

inductive research

Inductive vs. Deductive Research Approach

Examples

Research Problem

Ai generator.

research problem examples for students

A research problem is a specific issue or gap in knowledge that a researcher aims to address through systematic investigation. It forms the foundation of a study, guiding the research question, research design , and potential outcomes. Identifying a clear research problem is crucial as it often emerges from existing literature, theoretical frameworks, and practical considerations. In a student case study , the research question and hypothesis stem from the identified research problem.

What is a Research Problem?

A research problem is a specific issue, difficulty, contradiction, or gap in knowledge that a researcher aims to address through systematic investigation. It forms the basis of a study, guiding the research question, research design, and the formulation of a hypothesis.

Examples of Research Problem

Examples of Research Problem

  • Impact of Social Media on Adolescent Mental Health : Investigating how social media usage affects the mental health and well-being of teenagers.
  • Climate Change and Agricultural Productivity : Examining the effects of climate change on crop yields and farming practices.
  • Online Learning and Student Engagement : Assessing the effectiveness of online learning platforms in maintaining student engagement and academic performance.
  • Healthcare Access in Rural Areas : Exploring the barriers to healthcare access in rural communities and potential solutions.
  • Workplace Diversity and Employee Performance : Analyzing how workplace diversity influences team dynamics and employee productivity.
  • Renewable Energy Adoption : Studying the factors that influence the adoption of renewable energy sources in urban versus rural areas.
  • AI in Healthcare Diagnostics : Evaluating the accuracy and reliability of artificial intelligence in medical diagnostics.
  • Gender Disparities in STEM Education : Investigating the causes and consequences of gender disparities in STEM education and careers.
  • Urbanization and Housing Affordability : Exploring the impact of rapid urbanization on housing affordability and availability in major cities.
  • Public Transportation Efficiency : Assessing the efficiency and effectiveness of public transportation systems in reducing urban traffic congestion.

Research Problem Examples for Students

  • The Impact of Homework on Academic Achievement in High School Students
  • The Relationship Between Sleep Patterns and Academic Performance in College Students
  • The Effects of Extracurricular Activities on Social Skills Development
  • Influence of Parental Involvement on Students’ Attitudes Toward Learning
  • The Role of Technology in Enhancing Classroom Learning
  • Factors Contributing to Student Anxiety During Exams
  • The Effectiveness of Peer Tutoring in Improving Reading Skills
  • Challenges Faced by International Students in Adapting to New Educational Systems
  • Impact of Nutrition on Concentration and Academic Performance
  • The Role of Socioeconomic Status in Access to Higher Education Opportunities

Research Problems Examples in Education

  • Effect of Class Size on Student Learning Outcomes
  • Impact of Technology Integration in Classroom Instruction
  • Influence of Teacher Professional Development on Student Achievement
  • Challenges in Implementing Inclusive Education for Students with Disabilities
  • Effectiveness of Bilingual Education Programs on Language Proficiency
  • Role of Parental Involvement in Enhancing Academic Performance
  • Impact of School Leadership on Teacher Retention and Job Satisfaction
  • Assessment of Remote Learning Efficacy During the COVID-19 Pandemic
  • Barriers to STEM Education Participation Among Female Students
  • Effect of Socioeconomic Status on Access to Quality Education

Research Problems Examples in Business

  • Impact of Employee Engagement on Productivity and Retention
  • Effectiveness of Social Media Marketing Strategies on Consumer Behavior
  • Challenges in Implementing Sustainable Business Practices
  • Influence of Leadership Styles on Organizational Performance
  • Role of Corporate Culture in Driving Innovation
  • Impact of Remote Work on Team Collaboration and Communication
  • Strategies for Managing Supply Chain Disruptions
  • Effect of Customer Feedback on Product Development
  • Challenges in Expanding into International Markets
  • Influence of Brand Loyalty on Customer Retention

Basic Research Problem Examples

  • Effect of Sleep on Cognitive Function
  • Impact of Exercise on Mental Health
  • Influence of Diet on Academic Performance
  • Role of Social Support in Stress Management
  • Impact of Screen Time on Children’s Behavior
  • Effects of Pollution on Public Health
  • Influence of Music on Mood and Productivity
  • Role of Genetics in Disease Susceptibility
  • Impact of Advertising on Consumer Choices
  • Effects of Climate Change on Local Wildlife

Research Problem in Research Methodology

A research problem in research methodology refers to an issue or gap in the process of conducting research that requires a solution. Examples include:

  • Validity and Reliability of Measurement Tools : Ensuring that instruments used for data collection consistently produce accurate results.
  • Selection of Appropriate Sampling Techniques : Determining the best sampling method to ensure the sample represents the population accurately.
  • Bias in Data Collection and Analysis : Identifying and minimizing biases that can affect the validity of research findings.
  • Ethical Considerations in Research : Addressing ethical issues related to participant consent, confidentiality, and data protection.
  • Generalizability of Research Findings : Ensuring that research results are applicable to broader populations beyond the study sample.
  • Mixed Methods Research Design : Effectively integrating qualitative and quantitative approaches in a single study.
  • Data Interpretation and Reporting : Developing accurate and unbiased interpretations and reports of research findings.
  • Longitudinal Study Challenges : Managing the complexities of conducting studies over extended periods.
  • Control of Extraneous Variables : Identifying and controlling variables that can affect the dependent variable outside the study’s primary focus.
  • Developing Theoretical Frameworks : Constructing robust frameworks that guide the research process and support hypothesis development.

Characteristics of a Research Problem

  • Clarity : The research problem should be clearly defined, unambiguous, and understandable to all stakeholders.
  • Specificity : It should be specific and narrow enough to be addressed comprehensively within the scope of the research.
  • Relevance : The problem should be significant and relevant to the field of study, contributing to the advancement of knowledge or practice.
  • Feasibility : It should be practical and manageable, considering the resources, time, and capabilities available to the researcher.
  • Novelty : The research problem should address an original question or gap in the existing literature, providing new insights or perspectives.
  • Researchability : The problem should be researchable using scientific methods, including data collection, analysis, and interpretation.
  • Ethical Considerations : The research problem should be ethically sound, ensuring no harm to participants or the environment.
  • Alignment with Objectives : The problem should align with the research objectives and goals, guiding the direction and purpose of the study.
  • Measurability : It should be possible to measure and evaluate the outcomes related to the problem using appropriate metrics and methodologies.
  • Contextualization : The problem should be placed within a broader context, considering theoretical frameworks, existing literature, and practical applications.

Types of Research Problems

  • Aim: To describe the characteristics of a specific phenomenon or population.
  • Example: “What are the key features of successful online education programs?”
  • Aim: To compare two or more groups, variables, or phenomena.
  • Example: “How does employee satisfaction differ between remote and on-site workers?”
  • Aim: To determine cause-and-effect relationships between variables.
  • Example: “What is the impact of leadership style on employee productivity?”
  • Aim: To examine the relationship between two or more variables.
  • Example: “What is the relationship between social media usage and self-esteem among teenagers?”
  • Aim: To explore a new or under-researched area where little information is available.
  • Example: “What are the emerging trends in consumer behavior post-pandemic?”
  • Aim: To solve a specific, practical problem faced by an organization or society.
  • Example: “How can small businesses improve their cybersecurity measures?”
  • Aim: To expand existing theories or develop new theoretical frameworks.
  • Example: “How can existing theories of motivation be integrated to better understand employee behavior?”
  • Aim: To evaluate the effects of policies or suggest improvements.
  • Example: “What are the effects of the new minimum wage laws on small businesses?”
  • Aim: To investigate ethical issues within a field or practice.
  • Example: “What are the ethical implications of AI in decision-making processes?”
  • Aim: To address issues that span multiple disciplines or fields of study.
  • Example: “How can principles of environmental science and economics be combined to develop sustainable business practices?”

How to Define a Research Problem

Defining a research problem involves several key steps that help in identifying and articulating a specific issue that needs investigation. Here’s a structured approach:

  • Choose a general area of interest or field relevant to your expertise or curiosity. This can be broad initially and will be narrowed down through the next steps.
  • Review existing research to understand what has already been studied. This helps in identifying gaps, inconsistencies, or areas that need further exploration.
  • Based on your literature review, refine your broad topic to a more specific issue or aspect that has not been adequately addressed.
  • Ensure the problem is significant and relevant to the field. It should address a real-world issue or theoretical gap that contributes to advancing knowledge or solving practical problems.
  • Clearly articulate the problem in a concise and precise manner. This statement should explain what the problem is, why it is important, and how it impacts the field.
  • Develop specific research questions that your study will answer. These questions should be directly related to your problem statement and guide the direction of your research.
  • Establish clear research objectives that outline what you aim to achieve. Formulate hypotheses if applicable, which are testable predictions related to your research questions.
  • Consider the resources, time, and scope of your study. Ensure that the research problem you have defined is feasible to investigate within the constraints you have.
  • Discuss your defined research problem with peers, mentors, or experts in the field. Feedback can help refine and improve your problem statement.

Importance of Research Problem

The research problem is crucial as it forms the foundation of any research study, guiding the direction and focus of the investigation. It helps in:

  • Defining Objectives : Clarifies the purpose and objectives of the research, ensuring the study remains focused and relevant.
  • Guiding Research Design : Determines the methodology and approach, including data collection and analysis techniques.
  • Identifying Significance : Highlights the importance and relevance of the study, demonstrating its potential impact on the field.
  • Focusing Efforts : Helps researchers concentrate their efforts on addressing specific issues, leading to more precise and meaningful results.
  • Resource Allocation : Assists in the efficient allocation of resources, including time, funding, and manpower, by prioritizing critical aspects of the research.

FAQ’s

Why is defining a research problem important.

Defining a research problem is crucial because it guides the research process, helps focus on specific objectives, and determines the direction of the study.

How do you identify a research problem?

Identify a research problem by reviewing existing literature, considering real-world issues, discussing with experts, and reflecting on personal experiences and observations.

What is the difference between a research problem and a research question?

A research problem identifies the issue to be addressed, while a research question is a specific query the research aims to answer.

Can a research problem change during the study?

Yes, a research problem can evolve as new data and insights emerge, requiring refinement or redefinition to better align with findings.

How do you formulate a research problem?

Formulate a research problem by clearly stating the issue, outlining its significance, and specifying the context and scope of the problem.

What is the role of literature review in identifying a research problem?

A literature review helps identify gaps, inconsistencies, and unresolved issues in existing research, which can guide the formulation of a research problem.

How does a research problem impact the research design?

The research problem shapes the research design by determining the methodology, data collection techniques, and analysis strategies needed to address the issue.

What are common sources of research problems?

Common sources include academic literature, practical experiences, societal issues, technological advancements, and gaps identified in previous research.

How specific should a research problem be?

A research problem should be specific enough to guide focused research but broad enough to allow comprehensive investigation and meaningful results.

How do research objectives relate to the research problem?

Research objectives are specific goals derived from the research problem, detailing what the study aims to achieve and how it plans to address the problem.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

How to Write a Research Problem? Tips and Examples

Master crafting effective research problem statements. Learn key components, avoid common pitfalls, and lay the groundwork for impactful academic research.

How to Write a Research Problem? Tips and Examples

Glice Martineau

Jun 24, 2024

How to Write a Research Problem? Tips and Examples

Photo by Glenn Carstens-Peters on Unsplash

Are you struggling to write a compelling problem statement for your research paper ?

Understanding how to articulate a research problem is crucial for any academic endeavor.

This article will help you learn how to write a well-structured problem statement, providing valuable insights and practical tips.

mobile mockup listening.com

What is a Research Problem Statement?

A research problem statement is a concise description of an issue or problem that your research aims to address.

It's similar to a thesis statement but focuses specifically on the problem at hand rather than the entire argument of your paper.

It serves as the foundation for your entire research project, guiding your methodology and framing your research questions. 

But what makes a good research problem, and how can you craft one effectively?

Why is a Well-Defined Research Problem Crucial?

A well-written statement does not make sweeping generalizations but focuses on a specific problem or issue.

It provides clarity and direction for your research , helping you stay focused throughout the research process.

Moreover, a good problem statement can:

1. Help you define the scope of your research

2. Guide the development of your research questions or hypotheses

3. Justify the relevance of your research to your field of study, keeping in mind your type of research as well

How to Identify a Research Problem?

Identifying a relevant and researchable problem is the first step as you write a research paper .

But how do you go about finding a suitable research topic ?

Here are some strategies:

1. Review existing literature in your field

2. Identify gaps in current knowledge

3. Consider real-world issues related to your area of study

4. Consult with experts or practitioners in your field

Remember, choosing a research problem offers an opportunity to contribute meaningfully to your field of study and potentially inspire future research.

person working in a lab with tools

Photo by Freepik

What Are the Key Components of a Research Problem?

It should include the following elements:

1. Background information: Provide context for your research problem

2. Statement of the problem: Clearly articulate the issue you're addressing

3. Significance of the problem: Explain why the problem is worth investigating

4. Purpose of your research: Outline what you hope to achieve through your study. The ultimate goal is to solve the problem.

How to Write an Effective Research Problem?

Writing an effective problem statement requires careful thought and planning.

Here's a step-by-step guide to help you craft a compelling research problem:

1. Introduce the general area in which your research is situated

2. Narrow down to the specific issue or problem you're addressing

3. Explain why this problem is significant and worth researching

4. Outline the potential implications of addressing this problem

5. State your research objectives or questions

Remember, a good research problem begins by introducing the broader context of your research and then narrows down to the specific issue at hand.

What Are Some Common Mistakes to Avoid?

When writing a problem statement, be wary of these common pitfalls:

1. Being too vague or broad in your problem definition

2. Failing to explain the significance of the problem 3. Including personal opinions or biases

4. Proposing solutions before fully exploring the problem

5. Neglecting to consider the feasibility of researching the problem

How Does a Problem Statement Differ from a Research Question?

person typing on a laptop

Image by yanalya on Freepik

While closely related, a problem statement and a research question serve different purposes.

A research problem describes the issue you're addressing, while a research question refers to a specific query you aim to answer through your study. 

Your research problem surviving the relevancy test should naturally lead to the formulation of clear research questions or hypotheses.

Can You Provide a Problem Statement Example?

Example Problem Statement:

"Despite increased awareness of the importance of mental health, access to mental health services remains limited in rural communities. This lack of access contributes to higher rates of untreated mental health issues, substance abuse, and suicide in these areas. This research aims to identify the primary barriers to mental health service provision in rural settings and explore potential solutions to improve access and outcomes."

Let's break down this problem statement to understand its components:

  • Context and Background: The statement begins by acknowledging the broader context: "Despite increased awareness of the importance of mental health..." This sets the stage and shows that while progress has been made in recognizing mental health's significance, challenges persist. \
  • Problem Identification: The core issue is clearly stated: "...access to mental health services remains limited in rural communities." This succinctly identifies the specific problem being addressed. \
  • Consequences and Significance: The statement outlines the impact of the problem: "This lack of access contributes to higher rates of untreated mental health issues, substance abuse, and suicide in these areas." This demonstrates the severity and relevance of the issue, justifying why it needs to be addressed. \
  • Research Objectives: The final sentence outlines the goals of the research: "This research aims to identify the primary barriers to mental health service provision in rural settings and explore potential solutions to improve access and outcomes." This gives a clear direction for the study and hints at the potential value of the research. \
  • Scope: The statement focuses specifically on rural communities, clearly defining the scope of the research. \
  • Measurability: While not explicitly stated, the mention of "rates of untreated mental health issues, substance abuse, and suicide" suggests that these factors could be quantifiably measured to assess the problem and potential solutions. \

To further expand this example, we could add more specific details:

  • Quantify the problem: "In rural areas, the suicide rate is 1.5 times higher than in urban centers, and over 60% of rural Americans live in areas with a shortage of mental health professionals."
  • Identify stakeholders: "This issue affects not only individuals suffering from mental health issues but also their families, local healthcare providers, and the broader rural community."
  • Highlight current gaps: "Existing telemedicine solutions have shown promise in urban areas but face unique challenges in rural settings due to limited broadband access and technological literacy."
  • Suggest potential directions: "This research will explore innovative approaches, including mobile mental health clinics, community health worker programs, and adapted telemedicine solutions tailored for rural contexts."

By expanding the problem statement in this way, we provide a more comprehensive understanding of the issue, its importance, and the potential directions for addressing it. This level of detail helps to guide the research process and communicate the project's significance to stakeholders and potential funders.

How to Evaluate Your Research Problem?

Once you've drafted your problem statement, it's essential to evaluate its effectiveness.

Consider the following questions:

1. Is the problem clearly defined and specific?

2. Is the significance of the problem well-explained?

3. Does the statement provide a clear direction for your research?

4. Is the problem researchable within your constraints (time, resources, etc.)?

5. Does the statement align with the overall purpose of your research study?

What's Next After Formulating Your Problem Statement?

After crafting your research problem, you can move forward with:

1. Developing your research questions or hypotheses

2. Designing your research methodology, which may include qualitative research techniques

3. Writing your research proposal

4. Conducting a thorough review of pertinent research associated with your overall area of study

Remember, your problem statement will guide these subsequent steps, so it's worth investing time to get it right.

Key Takeaways

In conclusion, mastering the art of writing a problem statement is crucial for conducting meaningful academic research .

By following the guidelines outlined in this article, you'll be well-equipped to craft a compelling problem statement that sets the stage for impactful research, whether it's  theoretical research or applied studies.

Key takeaways to remember:

  • A good research problem should be specific, significant, and searchable
  • Your research problem should provide context, clearly articulate the issue, and explain its importance
  • Avoid common pitfalls like being too vague or proposing solutions prematurely
  • Regularly evaluate and refine your problem statement throughout the research process
  • Use your research problem as a guide for developing research questions and designing your study

By applying these principles, you'll be well on your way to conducting research that makes a meaningful contribution to your field of study and helps define the problem in a way that facilitates effective investigation.

Easily pronounces technical words in any field

Problem Satement

Research Problem

Research Paper

Recent articles

research problem examples for students

What is an Individualized Education Plan (IEP)?

research problem examples for students

Aug 1, 2024

Individualized Education Plan

Special Education

IEP Process

Learning Disabilities

Assistive Technology

research problem examples for students

Noam Chomsky's Theory of Language Acquisition

research problem examples for students

Aug 5, 2024

research problem examples for students

What are the Responsibilities of a Cosigner in a Student Loan?

Aug 6, 2024

Financial Aid

College Funding

Cosigner Responsibilities

Student Loans

research problem examples for students

10 Best Productivity Books

Aug 13, 2024

Productivity Books

Time Management

Efficiency Tips

Self Improvement

Goal Setting

Identifying and Formulating the Research Problem

  • October 2018
  • In book: Research in ELT

Parlindungan Pardede at Universitas Kristen Indonesia

  • Universitas Kristen Indonesia

Abstract and Figures

. Differences between Quantitative and Qualitative Research Problem

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations
  • Villahermosa Tingabngab

Bernadette Santos Binayao

  • Bernadette Santos
  • Lizeth Ramos Acosta

Fidias G. Arias-Odón

  • Constantin Cucoş
  • Aleksander Pabian

Katarzyna Bilińska-Reformat

  • Thuy Ho Hoang Nguyen
  • Thanh-Hai L. Cao
  • Hai Thi Thanh Le
  • Int J Educ Manag
  • Musa Mashauri Joseph
  • Thaudensia Thomas Ndeskoi

Katyeudo Karlos de Sousa Oliveira

  • Ricardo André Cavalcante de Souza

Parlindungan Pardede

  • Adrian Thornhill
  • John W Creswell
  • Alan Bryman
  • L Angelianawati
  • B B Shams-Abadi
  • A G Mehrdad
  • S Sivakumar
  • C Szalinski
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Research process
  • How to Define a Research Problem | Ideas & Examples

How to Define a Research Problem | Ideas & Examples

Published on 8 November 2022 by Shona McCombes and Tegan George.

A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge.

Some research will do both of these things, but usually the research problem focuses on one or the other. The type of research problem you choose depends on your broad topic of interest and the type of research you think will fit best.

This article helps you identify and refine a research problem. When writing your research proposal or introduction , formulate it as a problem statement and/or research questions .

Table of contents

Why is the research problem important, step 1: identify a broad problem area, step 2: learn more about the problem, frequently asked questions about research problems.

Having an interesting topic isn’t a strong enough basis for academic research. Without a well-defined research problem, you are likely to end up with an unfocused and unmanageable project.

You might end up repeating what other people have already said, trying to say too much, or doing research without a clear purpose and justification. You need a clear problem in order to do research that contributes new and relevant insights.

Whether you’re planning your thesis , starting a research paper , or writing a research proposal , the research problem is the first step towards knowing exactly what you’ll do and why.

Prevent plagiarism, run a free check.

As you read about your topic, look for under-explored aspects or areas of concern, conflict, or controversy. Your goal is to find a gap that your research project can fill.

Practical research problems

If you are doing practical research, you can identify a problem by reading reports, following up on previous research, or talking to people who work in the relevant field or organisation. You might look for:

  • Issues with performance or efficiency
  • Processes that could be improved
  • Areas of concern among practitioners
  • Difficulties faced by specific groups of people

Examples of practical research problems

Voter turnout in New England has been decreasing, in contrast to the rest of the country.

The HR department of a local chain of restaurants has a high staff turnover rate.

A non-profit organisation faces a funding gap that means some of its programs will have to be cut.

Theoretical research problems

If you are doing theoretical research, you can identify a research problem by reading existing research, theory, and debates on your topic to find a gap in what is currently known about it. You might look for:

  • A phenomenon or context that has not been closely studied
  • A contradiction between two or more perspectives
  • A situation or relationship that is not well understood
  • A troubling question that has yet to be resolved

Examples of theoretical research problems

The effects of long-term Vitamin D deficiency on cardiovascular health are not well understood.

The relationship between gender, race, and income inequality has yet to be closely studied in the context of the millennial gig economy.

Historians of Scottish nationalism disagree about the role of the British Empire in the development of Scotland’s national identity.

Next, you have to find out what is already known about the problem, and pinpoint the exact aspect that your research will address.

Context and background

  • Who does the problem affect?
  • Is it a newly-discovered problem, or a well-established one?
  • What research has already been done?
  • What, if any, solutions have been proposed?
  • What are the current debates about the problem? What is missing from these debates?

Specificity and relevance

  • What particular place, time, and/or group of people will you focus on?
  • What aspects will you not be able to tackle?
  • What will the consequences be if the problem is not resolved?

Example of a specific research problem

A local non-profit organisation focused on alleviating food insecurity has always fundraised from its existing support base. It lacks understanding of how best to target potential new donors. To be able to continue its work, the organisation requires research into more effective fundraising strategies.

Once you have narrowed down your research problem, the next step is to formulate a problem statement , as well as your research questions or hypotheses .

Once you’ve decided on your research objectives , you need to explain them in your paper, at the end of your problem statement.

Keep your research objectives clear and concise, and use appropriate verbs to accurately convey the work that you will carry out for each one.

I will compare …

The way you present your research problem in your introduction varies depending on the nature of your research paper . A research paper that presents a sustained argument will usually encapsulate this argument in a thesis statement .

A research paper designed to present the results of empirical research tends to present a research question that it seeks to answer. It may also include a hypothesis – a prediction that will be confirmed or disproved by your research.

Research objectives describe what you intend your research project to accomplish.

They summarise the approach and purpose of the project and help to focus your research.

Your objectives should appear in the introduction of your research paper , at the end of your problem statement .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. & George, T. (2022, November 08). How to Define a Research Problem | Ideas & Examples. Scribbr. Retrieved 26 August 2024, from https://www.scribbr.co.uk/the-research-process/define-research-problem/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, dissertation & thesis outline | example & free templates, example theoretical framework of a dissertation or thesis, how to write a strong hypothesis | guide & examples.

research problem examples for students

Best Education Research Topics | Inspiration & Ideas

research problem examples for students

Introduction

What is education research, how do you choose a research topic in education, research topics for education research.

Education research plays a vital role in shaping the future of teaching and learning by exploring new methods, policies, and practices that can improve educational outcomes. Whether you are an educator, a student, or a researcher, selecting the right research topic in education is crucial for contributing meaningful insights to the field. This article provides inspiration and ideas for choosing compelling education research topics, covering a range of areas such as early childhood education, educational leadership, academic performance, and more. By exploring various educational research topics, you can address current challenges in education and help shape the policies and practices that impact learners at all levels.

research problem examples for students

Education research is the systematic study of teaching and learning processes, educational policies, and the factors that influence educational outcomes. It encompasses a wide range of topics, from the effectiveness of different teaching methods to the impact of social, economic, and cultural factors on student achievement. The goal of education research is to generate evidence-based insights that can inform educational practice, guide policy decisions, and ultimately improve the quality of education for all learners.

Researchers in the field of education use various methodologies to explore their topics, including qualitative methods like interviews and case studies , and quantitative methods such as surveys and experiments. These methods allow researchers to collect and analyze data that can provide a deeper understanding of how education systems work and how they can be improved. For example, a study might examine the impact of early childhood education on long-term academic success, or investigate the effectiveness of professional development programs for teachers.

Education research is critical not only for advancing theoretical knowledge but also for addressing practical challenges in the classroom. By understanding what works, for whom, and under what conditions, educators and policymakers can make more informed decisions that benefit students. Furthermore, education research often highlights the disparities and inequities in educational opportunities and outcomes, prompting efforts to create more inclusive and equitable learning environments. Whether the focus is on curriculum development, teacher training, student assessment, or policy reform, education research provides the foundation for continuous improvement in education.

research problem examples for students

Choosing a research topic in education involves careful consideration of your interests, the relevance of the topic, and its feasibility. Here are three key factors to guide you in selecting an effective research topic in the field of education.

Identify your interests and passions

The first step in choosing a research topic is to reflect on your own interests and passions. What aspects of education do you find most compelling? Whether it's early childhood development, educational technology, or inclusive education, starting with a topic that genuinely interests you will help keep you motivated throughout the research process. Your personal experiences in the field—whether as a teacher, student, or parent—can also provide valuable insights and inspiration for your research. By focusing on a topic that resonates with you, you're more likely to engage deeply with the material, leading to more meaningful and insightful research.

Consider the relevance and impact of the topic

Once you've identified areas of interest, it's important to consider the relevance and potential impact of the topic. Ask yourself whether the topic addresses current challenges or gaps in the field of education. For instance, with the increasing integration of technology in classrooms, a research topic that examines the effects of digital tools on student learning could be highly relevant. Similarly, topics that explore issues like educational equity, teacher retention, or the effectiveness of remote learning have significant implications for policy and practice. Selecting a topic with clear relevance ensures that your research will contribute to ongoing discussions in the field and have a tangible impact on educational outcomes.

Assess feasibility and resources

Feasibility is another critical factor to consider when choosing a research topic. Before committing to a topic, evaluate the resources available to you, including access to data, research materials, and time. Consider whether the topic can be explored within the scope of your project, whether it's a dissertation, thesis, or a smaller research paper . For example, a topic that requires extensive fieldwork or access to specific populations might be challenging if you have limited time or resources. It's also important to think about the availability of literature and previous studies on the topic, as these will form the basis of your literature review and provide context for your research. Choosing a topic that is feasible ensures that you can conduct thorough and rigorous research without becoming overwhelmed by practical constraints.

research problem examples for students

Identify actionable research insights with ATLAS.ti

Download a free trial of ATLAS.ti and use our intuitive interface to analyze your qualitative data.

Education is a broad and multifaceted field that offers a wealth of research opportunities across various areas of study. This section provides an in-depth exploration of potential research topics in education within seven key areas: early childhood education, educational leadership, academic performance, college students, educational psychology, multicultural education, and student motivation. Each of these areas presents unique challenges and questions, making them rich grounds for research that can contribute to the improvement of educational practices and policies.

Early childhood education

Early childhood education is a critical phase in a child's development, setting the foundation for future learning and growth. Research in this area can address various aspects of early education, from curriculum design to the impact of early intervention programs.

One promising research topic in early childhood education is the role of play-based learning in cognitive and social development. Play in physical education and in casual classroom settings is often viewed as a natural and essential part of childhood, and many educators advocate for its inclusion in early education programs. However, there is ongoing debate about the most effective ways to integrate play with formal learning objectives. Research could explore how different types of play, such as free play, guided play, and structured play, influence children's cognitive abilities, social skills, and emotional well-being. Additionally, studies could examine the long-term benefits of play-based learning, comparing outcomes for children who participate in play-focused programs with those in more traditional, academically focused settings.

Another important area of research is the impact of early childhood education on later academic achievement. There is substantial evidence that high-quality early education programs can lead to better academic outcomes in later years, particularly for children from disadvantaged backgrounds. Researchers could investigate the specific elements of early childhood programs that contribute to these positive outcomes, such as teacher qualifications, class size, parental involvement, and the use of evidence-based curricula. This research could also examine how early education programs can be tailored to meet the needs of diverse populations, including children with disabilities and those from different cultural and linguistic backgrounds.

Finally, the transition from early childhood education to primary school is a critical period that can have lasting effects on a child's academic trajectory. Research could explore strategies for smoothing this transition, such as the alignment of curricula between preschool and primary school, the role of family engagement, and the effectiveness of transition programs designed to prepare children for the shift to more structured, formal education. Studies could also investigate the emotional and social challenges children face during this transition and how schools and families can support children through these changes.

research problem examples for students

Educational leadership

Educational leadership is a key factor in the success of schools and educational institutions. Effective leadership can inspire teachers, improve student outcomes, and drive innovation in education. Research in this area can explore various aspects of leadership, from the characteristics of successful leaders to the strategies they use to achieve their goals.

One important topic in educational leadership is the impact of leadership styles on school performance. Different leadership styles, such as transformational, transactional, and instructional leadership, have been shown to influence various aspects of school culture and effectiveness. Researchers could examine how these leadership styles affect teacher motivation, student achievement, and school climate. For example, a study could compare schools led by transformational leaders, who focus on inspiring and motivating staff, with those led by instructional leaders, who emphasize curriculum and teaching practices. This research could provide insights into which leadership approaches are most effective in different educational contexts.

Another critical area of research is the role of school principals in promoting equity and inclusion. Principals play a crucial role in shaping the culture of their schools and ensuring that all students, regardless of their background, have access to a high-quality education. Research could explore how principals can foster an inclusive school environment, support diverse learners, and address disparities in academic achievement. This could include studies on the strategies principals use to implement inclusive practices, the challenges they face in promoting equity, and the impact of their efforts on student outcomes.

Educational leadership also involves decision-making and the ability to manage change effectively. As schools face increasing pressure to adapt to new technologies, policies, and societal expectations, the ability of leaders to guide their institutions through these changes is more important than ever. Research could investigate how school leaders make decisions in complex, dynamic environments, and how they manage the process of change. This could include studies on the decision-making processes of successful leaders, the factors that influence their decisions, and the outcomes of their decisions for students, teachers, and the broader school community.

Academic performance

Student academic performance is a central concern in education research, as it is often used as a measure of both student success and the effectiveness of educational systems. Understanding the factors that influence academic performance can help educators develop strategies to support all students in reaching their full potential.

One key area of research is the impact of socio-economic status (SES) on academic performance. Numerous studies have shown that students from lower SES backgrounds tend to perform worse academically compared to their more affluent peers. Researchers could explore the specific mechanisms through which SES affects academic outcomes, such as access to resources, parental involvement, and exposure to stressors. Additionally, research could investigate interventions that aim to mitigate the effects of SES on academic performance, such as tutoring programs, after-school activities, and school-based support services.

Another important topic is the role of teacher quality in student achievement. Research has consistently shown that teachers are one of the most significant factors influencing student performance. Studies could examine what specific teacher characteristics, such as qualifications, experience, and instructional practices, have the greatest impact on student outcomes. Furthermore, researchers could investigate how professional development programs for teachers can enhance their effectiveness in the classroom, leading to better academic results for students.

The use of technology in education is another area that has significant implications for academic performance. With the increasing integration of digital tools and platforms into the classroom, research could explore how technology affects student learning. This could include studies on the effectiveness of online learning compared to traditional face-to-face instruction, the impact of educational apps and games on student engagement and achievement, and the challenges and opportunities of using technology to support diverse learners. Additionally, research could examine how teachers can effectively integrate technology into their teaching practices to enhance student learning.

research problem examples for students

College students

The college years are a critical period of personal and academic development, making them a rich area for education research. Research on college students can explore a wide range of topics, from factors that influence college choice to strategies for supporting student success and well-being.

One important research topic is the impact of financial aid on college access and retention. The rising cost of higher education has made financial aid an essential resource for many students. Researchers could investigate how different types of financial aid, such as grants, scholarships, and loans, affect students' decisions to enroll in and persist through college. This research could also examine the barriers that prevent students from accessing financial aid and how institutions can better support students in navigating the financial aid process.

Another key area of research is the factors that contribute to college student retention and success. While many students start college, not all complete their degrees. Research could explore the reasons why some students struggle to stay enrolled, such as academic challenges, student mental health issues, and financial pressures. Additionally, studies could investigate the effectiveness of programs and services designed to support student retention, such as academic advising, tutoring centers, and mental health resources. Understanding these factors can help colleges develop strategies to support students throughout their college journey.

The mental health of college students is another critical issue that has gained increasing attention in recent years. College students face a range of stressors, including academic pressures, social challenges, and the transition to independence. Research could explore the prevalence of mental health issues among college students, the factors that contribute to these issues, and the effectiveness of campus mental health services. Additionally, studies could examine how colleges can create supportive environments that promote student well-being and reduce the stigma associated with seeking help for mental health concerns.

research problem examples for students

Educational psychology

Educational psychology is the study of how people learn and develop in educational settings. This field of research can provide valuable insights into the cognitive, emotional, and social processes that underlie learning, as well as the factors that influence educational outcomes.

One important area of research in educational psychology is the role of motivation in learning. Motivation is a key factor that drives student engagement and academic achievement. Researchers could explore the different types of motivation, such as intrinsic and extrinsic motivation, and how they impact learning outcomes. For example, studies could examine how intrinsic motivation, or the desire to learn for its own sake, affects students' persistence and performance in challenging subjects. Additionally, research could investigate how teachers can foster motivation in the classroom, such as through the use of praise, rewards, and goal-setting strategies.

Another critical topic in educational psychology is the impact of cognitive development on learning. Cognitive development refers to the changes in thinking, reasoning, and problem-solving abilities that occur as children grow. Research could explore how different stages of cognitive development affect students' ability to learn and process information. For example, studies could examine how younger students' limited working memory capacity impacts their ability to solve complex math problems, or how older students' advanced reasoning skills allow them to engage in abstract thinking. Understanding these developmental differences can help educators design instruction that is appropriate for students' cognitive abilities.

The role of social and emotional learning (SEL) in education is another important area of research in educational psychology. SEL refers to the process through which students develop the skills to manage their emotions, build healthy relationships, and make responsible decisions. Research could explore how SEL programs impact students' academic performance, behavior, and overall well-being. Additionally, studies could investigate the best practices for implementing SEL in schools, such as integrating SEL into the curriculum, providing professional development for teachers, and creating a supportive school climate that promotes social and emotional growth.

research problem examples for students

Multicultural education

Multicultural education is an approach to teaching and learning that seeks to promote equity, respect for diversity, and inclusion in the classroom. Research in this area can explore how educators can create learning environments that reflect and honor the diverse cultural backgrounds of their students.

One important research topic in multicultural education is the development and implementation of culturally responsive teaching practices. Culturally responsive teaching involves recognizing and valuing students' cultural identities and incorporating their cultural experiences into the curriculum and instructional practices. Researchers could explore how teachers can develop culturally responsive teaching practices and the impact of these practices on student engagement and achievement. For example, studies could examine how incorporating students' cultural traditions, languages, and perspectives into the classroom can enhance their sense of belonging and motivation to learn.

Another key area of research is the role of multicultural education in reducing achievement gaps. Achievement gaps between students of different racial, ethnic, and socioeconomic backgrounds are a persistent issue in education. Research could explore how multicultural education can address these gaps by promoting equity and inclusion in the classroom. For example, studies could examine how culturally responsive teaching practices can help close achievement gaps by providing all students with access to high-quality, culturally relevant instruction. Additionally, research could investigate the impact of multicultural education programs on students' attitudes toward diversity and their ability to interact effectively with people from different cultural backgrounds.

The integration of multicultural education into teacher preparation programs is another important research topic. Preparing teachers to work in diverse classrooms is essential for promoting equity and inclusion in education. Research could explore how teacher preparation programs can equip future educators with the knowledge, skills, and attitudes needed to implement multicultural education in their classrooms. For example, studies could examine the effectiveness of coursework, field experiences, and professional development opportunities that focus on multicultural education. Additionally, research could investigate how teacher preparation programs can address the biases and stereotypes that educators may bring to the classroom and how they can foster a commitment to social justice and equity in education.

research problem examples for students

Student motivation

Student motivation is a critical factor in academic success and is influenced by a range of internal and external factors. Understanding what drives students to engage in learning can help educators design more effective instructional strategies and support student achievement.

One important research topic in student motivation is the impact of goal setting on academic performance. Goal setting is a powerful motivational tool that can help students focus their efforts and persist in the face of challenges. Research could explore how different types of goals, such as short-term versus long-term goals or mastery-oriented versus performance-oriented goals, affect students' motivation and academic outcomes. For example, studies could examine how setting specific, challenging, and achievable goals can enhance students' motivation to succeed in difficult subjects. Additionally, research could investigate teachers' roles in preparing students in setting and achieving their goals, such as through the use of goal-setting frameworks, feedback, and reflection activities.

research problem examples for students

Another key area of research is the role of self-efficacy in student motivation. Self-efficacy refers to a student's belief in their ability to succeed in specific tasks or situations. Research has shown that students with high self-efficacy are more likely to take on challenging tasks, persist in the face of difficulties, and achieve higher academic outcomes. Researchers could explore how self-efficacy develops and how it can be enhanced through instructional practices, such as providing opportunities for success, offering constructive feedback, and modeling effective problem-solving strategies. Additionally, studies could examine how self-efficacy interacts with other motivational factors, such as interest, effort, and resilience, to influence student performance.

The impact of classroom environment on student motivation is another important research topic. The classroom environment, including the physical space, social dynamics, and instructional practices, plays a significant role in shaping students' motivation to learn. Research could explore how different aspects of the classroom environment, such as the presence of supportive relationships, the availability of resources, and the use of engaging instructional strategies, influence students' motivation and engagement. For example, studies could examine how a positive classroom climate, characterized by mutual respect, collaboration, and high expectations, fosters students' motivation to participate and succeed in learning activities. Additionally, research could investigate how teachers can create a motivating classroom environment by using strategies such as differentiation, student-centered learning, and the incorporation of students' interests and preferences into the curriculum.

research problem examples for students

Make the most of your research with ATLAS.ti

Powerful tools turn your data into critical insights. See how by downloading a free trial of ATLAS.ti.

research problem examples for students

Designing a Context-Driven Problem-Solving Method with Metacognitive Scaffolding Experience Intervention for Biology Instruction

  • Open access
  • Published: 27 August 2024

Cite this article

You have full access to this open access article

research problem examples for students

  • Merga Dinssa Eticha   ORCID: orcid.org/0009-0008-9263-3273 1 , 2 ,
  • Adula Bekele Hunde 3 &
  • Tsige Ketema 1  

Learner-centered instructional practices, such as the metacognitive strategies scaffolding the problem-solving method for Biology instruction, have been shown to promote students’ autonomy and self-direction, significantly enhancing their understanding of scientific concepts. Thus, this study aimed to elucidate the importance and procedures of context analysis in the development of a context-driven problem-solving method with a metacognitive scaffolding instructional approach, which enhances students’ learning effectiveness in Biology. Therefore, the study was conducted in the Biology departments of secondary schools in Shambu Town, Oromia Region, Ethiopia. The study employed mixed-methods research to collect and analyze data, involving 12 teachers and 80 students. The data collection tools used were interviews, observations, and a questionnaire. The study revealed that conducting a context analysis that involves teachers, students, and learning contexts is essential in designing a context-driven problem-solving method with metacognitive scaffolding for Biology instruction, which provides authentic examples, instructional content, and engaging scenarios for teachers and students. As a result, the findings of this study provide a practical instructional strategy that can be applied to studies aimed at designing a context-driven problem-solving method with metacognitive scaffolding with the potential to influence instructional practices.

Explore related subjects

  • Artificial Intelligence
  • Digital Education and Educational Technology

Avoid common mistakes on your manuscript.

Introduction

Biology is a vital subject in the Natural Sciences and enables learners to understand the mechanisms of living organisms and their practical applications for humans (Agaba, 2013 ). Therefore, Biology instruction requires interactive, learner-centered instructional methods like the problem-solving method with metacognitive scaffolding (PSMMS), which foster students to develop critical thinking, problem-solving, metacognitive, and scientific process skills (Al Azmy & Alebous, 2020 ; Inel & Balim, 2010 ) and help them make informed decisions regarding health and the environment, thereby advancing scientific knowledge (Aurah et al., 2011 ).

Although the focus is on students acquiring scientific knowledge and higher-order thinking skills (Senyigit, 2021 ), research revealed gaps in implementing the PSMMS in Biology, mainly due to the teachers’ limited experience in learner-centered methods (Agena, 2010 ; Beyessa, 2014 ), poor enhancement practices (MoE, 2019 ), tendency to use conventional problem-solving approaches (Aurah et al., 2011 ), and limited understanding of the roles of metacognition in instructional processes (Cimer, 2012 ). On the other hand, there is limited study on the importance of metacognitive instruction in scaffolding the problem-solving method in Biology, although it has a significant impact on students’ performance in mathematics and logical reasoning (Guner & Erbay, 2021 ).

In addition, metacognitive instructional strategies in primary school sciences and the contributions of metacognitive instructional intervention in developing countries are other areas where limited research has been done (Sbhatu, 2006). These challenges offer a study ground for investigating the intervention of metacognitive instructional methods in secondary schools, focusing on the problem-solving method in Biology. This study, therefore, aims to answer the research question, “How can context analysis be used to design a context-driven PSMMS and suggest PSMMS instructional guidelines to enhance students’ effective Biology learning?”

Theoretical Background

The problem-solving method.

The problem-solving method is a learner-centered approach that focuses on identifying, investigating, and solving problems (Ahmady & Nakhostin-Ruhi, 2014 ). The problem-solving method in Biology promotes advanced and critical thinking skills, enhancing students’ attitudes, academic performance, and subject understanding (Albay, 2019 ; Khaparde, 2019 ). Research has shown that students who learn using the problem-solving method outperform those who are taught conventionally (Nnorom, 2019 ). Studies have discussed that the problem-solving method encourages experimentation or learning through trial-and-error and also facilitates a constructivist learning environment by encouraging brainstorming and inquiry (e.g., Ishaku, 2015).

Metacognition

Metacognition, introduced by John Flavell in 1976, refers to an individual’s awareness, critical thinking, reflective judgment, and control of cognitive processes and strategies (Tachie, 2019 ). It consists of two main components, namely metacognitive knowledge and metacognitive regulation (Lai, 2011 ). Metacognitive knowledge involves understanding one’s own thinking, influencing performance, and effective use of methods through declarative, procedural, and conditional knowledge (Schraw et al., 2006 ; Sperling et al., 2004 ), while metacognitive regulation is about controlling thought processes and monitoring cognition, which involves planning, implementing, monitoring, and evaluating strategies (Aaltonen & Ikavalko, 2002 ; Zumbrunn et al., 2011 ).

Metacognitive instructional strategies are used to enhance learners’ effectiveness and support their learning process during the stages of forethought, performance, and self-reflection (Okoro & Chukwudi, 2011 ; Zimmerman, 2008 ). Therefore, metacognitive scaffolding, as described by Zimmerman ( 2008 ), is important in classroom interventions because it promotes problem-solving processes and supports metacognitive activities. According to Sbhatu (2006), understanding metacognitive processes and methods is fundamental for complex problem-solving tasks. Metacognitive functions are categorized based on the phases of the problem-solving method, including problem recognition, presentation, planning, execution, and evaluation (Kapa, 2001 ).

PSMMS in the Face of Globalization and Twenty-First Century Advancements

In the twenty-first century, societies rely on scientific and technological advances, and promoting scientific literacy is crucial for their integration into interactive learning environments (Chu et al., 2017 ). Studies suggest that science, technology, engineering, and mathematics (STEM) education promotes critical thinking, creativity, and problem-solving skills (Widya et al., 2019 ). Therefore, teachers should adopt a learning science and learner-centered approach and focus on higher-order thinking skills and problem-based tasks (Darling-Hammond et al., 2020 ; Nariman, 2014).

The implementation of metacognitive strategies as a scaffold system for the problem-solving method, which simultaneously fosters the development of higher-order skills in their Biology learning, helps students advance in the age of globalization and the twenty-first century. According to Chu et al. ( 2017 ), twenty-first century skills are classified into four categories, such as ways of thinking, ways of working, tools for working, and ways of living in an advanced world. Therefore, studies suggest that teachers can help students develop twenty-first century skills and influence learning through metacognition, thereby promoting self-directed learning (Stehle & Peters-Burton, 2019 ; Tosun & Senocak, 2013 ).

The Problem-Solving Method and Metacognition in Biology Instruction in Ethiopia

The National Education and Training Policy emphasizes the importance of education, particularly in science and technology, in improving problem-solving skills, cultural development, and environmental conservation for holistic development (ETP, 1994 ). Similarly, the 2009 Ethiopian Education Curriculum Framework Document highlights higher-order skills as key competencies and promotes the application, analysis, synthesis, evaluation, and innovation of knowledge for the twenty-first century (MoE, 2009 ). Whereas, a third revision of the curriculum is needed to promote science and technology studies with an emphasis on advanced cognitive skills and a shift from teacher-centered to learner-centered instructional methods (MoE, 2020 ).

The 2009 curriculum framework also places a strong emphasis on Biology as a life science, promoting understanding of self and living things while encouraging critical thinking and problem-solving. Biology lessons that integrate the problem-solving method can enhance students’ academic performance and understanding of the subject (Agaba, 2013 ). However, the Ethiopian education system faces challenges due to limited instructional resources, poor instructional methods, and a lack of experience in practical (hands-on) activities (Eshete, 2001; ETP, 1994 ; MoE, 2005 ; Negash, 2006 ). On the other hand, teachers’ inability to demonstrate effective instructional practices may contribute to low academic performance (Ganyaupfu, 2013 ; Umar, 2011 ).

Challenges in Implementing the PSMMS in Biology Instruction

Metacognitive processes are crucial for guiding learners in problem-solving activities (Sbhatu, 2006), but assessing them can be challenging due to their covert nature (Georghiades, 2000 ). Just like other areas of study, implementing metacognitive scaffolding of the problem-solving method in Biology instruction faces challenges such as complex learning, outdated skills, self-study, overloaded curricula, and limited resources, as shown in Table  1 .

Context Analysis in the Design of the PSMMS for Biology Instruction

Biology lessons are designed for different contexts and consider factors such as the learning environment, prior knowledge, background information, and cultural orientation (Reich et al., 2006 ). For this study, the three domains of context analysis (learners, learning, and learning task contexts) of Smith and Ragan’s (2005) instructional design model (as cited in Getenet, 2020 ) are adapted to design a context-based PSMMS method to generate authentic examples, strong scenarios, and instructional content, as shown in Table  2 .

Research Design

The study analyzed the learning context, including the available instructional resources and facilities in selected schools in Shambu Town, considering teachers’ and students’ perspectives using a mixed-methods research design (Creswell, 2009 ; Creswell & Creswell, 2018 ).

Study Participants

The study was conducted in public secondary schools in Shambu Town. Two schools, namely Shambu Secondary and Preparatory School (ShSPS) and Shambu Secondary School (ShSS), were selected using purposive sampling. Additionally, two Natural Sciences grade 11 sections, one from each school, were selected for instructional intervention based on feedback from context analysis to design an instructional approach, specifically the PSMMS in this study. Thus, all 12 Biology teachers and 80 eleventh-grade students participated in this study (see Table  4 ).

Data Collection Instruments and Procedure

To analyze the contexts to design a context-driven PSMMS for Biology instruction, data were collected using interviews, observations, and a questionnaire. Interviews were conducted to get insights from teachers, while observations were used to assess classroom instructions and instructional resources. Likewise, a questionnaire was administered to students to collect quantitative data on their opinions about the use of PSMMS in Biology instruction. The questionnaire, which was adapted from existing literature (Kallio et al., 2017 ; Rahmawati et al., 2018 ), was initially produced in English and subsequently translated into local language (Afan Oromo) with the help of both software (English to Oromo translator software) and experts. The questionnaire was pilot-tested on a sample of 40 students (22 males and 18 females) to identify any deficiencies in the measuring instrument, and responses were rated on a five-point Likert scale ranging from strongly agree ( N  = 5) to strongly disagree ( N  = 1). The reliability score of the questionnaire was determined to be 0.895, which is at a good level of acceptability.

In this design-based research (DBR) to design an instructional approach for context-driven PSMMS, the data collection process follows a context analysis procedure. Subsequently, the quantitative data collection method is based on the qualitative approach. Accordingly, assessing the context and literature was the first step in the research process. The qualitative approach used interviews and observations for data collection and was also used to identify instructional deficiencies and formulate questions for quantitative data collection.

Data Analysis

This context-based study used both qualitative and quantitative methods to analyze the data collected. In this context-based study, data analysis was conducted on the complex networks of contextual components (Wang & Hannafin, 2005 ). According to Table  2 , the domains of context analysis and key themes that emerged and were applied in this study are listed in Table  3 .

Qualitative data included interviews and notes recorded on the observation checklist. These were analyzed through thematic categorization. Each record was first transcribed, imported into Excel for filtering, and then sent back to Microsoft Word for highlighting. The transcripts were read several times to get a feel for the whole thing. The observation checklist was assessed by watching video recordings and taking notes. However, SPSS software version 24.0 was used to analyze quantitative data using descriptive and inferential statistics, including frequency, percentage, mean, standard deviation, and one-sample t-test.

Results and Discussions

In the study, a total of 12 Biology teachers participated, with 11 males and one female. As displayed in Table  4 , 41.67% of the teacher participants were from ShSPS, while 58.33% were from ShSS. The majority of these teachers had master’s degrees and had over ten years of teaching experience. As for the students involved, 52.5% were from ShSS and 47.5% were from ShSPS. The sex ratio among the students was 51.25% males and 48.75% females (Table  4 ).

Teachers’ Context Analysis

Beliefs about the practices of using the psmms in biology instruction.

The study analyzed teachers’ beliefs about the importance of the PSMMS in Biology instruction. Accordingly, most teachers interviewed (10 out of 12) stated that PSMMS improves students’ learning by enhancing their thinking skills, subject understanding, self-directed learning techniques, and behavior change, suggesting that it has a significant impact on students’ learning. About this, the study participant gave the following illustrative response:

In my opinion, using PSMMS in Biology classes improves students’ higher-order thinking skills by allowing them to understand and articulate problems in their context, stimulate reflection, and promote practical application knowledge (Teacher 4, ShSPS).

Concerning supportive learning, most of the teachers (nine out of 12) believed that it could enhance students’ engagement despite challenges in understanding and learning. About this, research participants said the following:

The PSMMS provides an engaging approach to Biology learning that promotes students’ active engagement and strengthens their awareness and understanding of the objectives and concepts they are expected to understand (Teacher 1, ShSS). Despite the challenge, I believe that using metacognitive scaffolding in the problem-solving method will help students develop their critical thinking skills. In addition, both teachers and students enjoy participating in the teaching-learning process in a classroom environment that is conducive to learning (Teacher 4, ShSPS).

The majority of teachers (eight out of 12) interviewed about PSMMS in Biology instruction argued that it is not commonly used in classrooms and instead relies on established methods like group discussions, pre-learning questions, projects, and quizzes. Some sample responses from teachers are:

The problem-solving method augmented by metacognition is crucial to learning Biology, although students and teachers have limited experience. However, motivated students using this strategy can make the Biology learning experience attractive (Teacher 2, ShSPS). Most students find learning Biology through the PSMMS a tiresome activity and believe that it is too challenging to achieve their learning goals (Teacher 1, ShSPS). The inability to implement the PSMMS in Biology learning experiences is attributed to inadequate laboratory equipment, teaching aids, and school facilities (Teacher 7, ShSS). On some occasions, I provide students with classwork, plans for implementing teaching strategies, arrange group discussions, and assist them in practicing subject-related skills. I then provide background information, promote class engagement, guide responses to questions, assess students’ existing knowledge and goals, provide relevant comments, and guide their thinking (Teacher 4, ShSPS).

Based on the results of the data analysis, it was found that teachers’ perceptions of the importance of the PSMMS to students’ Biology learning contributed significantly to the analysis of the learning context. Accordingly, the contribution of the PSMMS was to enhance students’ Biology learning by improving their critical thinking and learning experiences. Consistent with these findings, teachers’ positive beliefs about classroom problem-solving processes influence their approach to effective Biology teaching (Ishaku, 2015), and integrating metacognitive classroom interventions improves student learning, as evidenced by changes in conceptual learning and problem-solving skills (Guterman, 2002 ; Howard et al., 2001 ).

Observation of Teachers’ Classroom Instruction

The classroom instructional situation was observed to examine the effectiveness of PSMMS for Biology instruction. Consequently, teachers’ use of the PSMMS in Biology lessons was observed. According to the observation checklist, a total of 12 lessons, each lasting 40 minutes, were audited. The first step was to examine teachers’ daily lesson plans. Objectives were found to center predominantly on cognitive domains, neglecting higher-order problem-solving and metacognitive skills. This was evident from the use of terms such as “understand,” “know,” “write,” “explain,” and “describe” in the lesson plan objectives, which hold little significance for teaching Biology using the PSMMS. This finding is consistent with previous research (Chandio et al., 2016 ; Hyder & Bhamani, 2016 ) showing that the objectives of classroom lesson plans often focus on the lower cognitive domain, indicating lower-level knowledge acquisition.

Observing how teachers deliver lessons in the classroom revealed that they often require students to participate in group discussions, which they believe is a learner-centered approach. However, student engagement was limited, and the details of the tasks that students were expected to discuss were not outlined. Additionally, in the lessons observed, teachers failed to engage students, connect theory with practical applications, or support activity-based learning. On the other hand, teachers still have limited opportunities to assess understanding through targeted questions and encourage the use of critical thinking skills. Only oral questions, tests, or quizzes are used as an assessment method. These results were contradictory to the findings of other researchers’ studies, such as Ahmady and Nakhostin-Ruhi ( 2014 ) and Ishaku (2015), where teachers’ classroom lesson delivery is based on students’ constructivist and learner-centered environment acquiring advanced and critical thinking skills from Biology lessons.

The observation raised further questions regarding multimodal lesson delivery, revealing the use of visual representations of figures and diagrams in addition to the usual lecture style (auditory), raising additional concerns about multimodal instructional delivery. Therefore, there was no way to verify whether students had acquired the required higher-order skills, such as problem-solving and metacognitive skills, during their Biology learning. This finding contradicts the findings of Syofyan and Siwi’s ( 2018 ) research, which claims that students’ learning approaches are influenced by their sensory experiences. Consequently, students employ all their senses to capture information when teachers employ visual, auditory, and kinesthetic learning styles.

Students’ Context Analysis

The section presents the results of students’ responses collected using survey questions. Using a questionnaire with a five-point Likert scale ranging from strongly agree to strongly disagree (5 = strongly agree, 4 = agree, 3 = neutral, 2 = disagree, and 1 = strongly disagree), the impact of using PSMMS in Biology learning practices on students’ problem-solving and metacognitive skills was examined. The questionnaire had a response rate of 80 out of 98 (81.63%), indicating satisfactory status and acceptable use of the instrument. Therefore, in students’ responses to the survey questions on Biology learning practices using the PSMMS, there is significant ( p  < 0.05) variation across all dimensions of the items (M = 4.32, SD = 1.30), with mean scores above 4 indicating general students’ agreement with most items listed in Table  5 .

Regarding the problem-solving skills (Items 1–5) that students would acquire in their Biology learning practices using the PSMMS in Biology lessons, the strongest agreement was to investigate and identify the most effective problem-solving strategies (Item 4, M = 4.25, SD = 1.11), followed by creating the framework and design of the problem-solving activities (Item 2, M = 4.05, SD = 1.16), appropriately evaluating the results and providing alternative solutions to the problems (Item 5, M = 3.91, SD = 1.21), and identifying the problem in the problem sketch and interpreting the final result (Item 1, M = 3.90, SD = 1.28). On the other hand, students typically expressed less positive views about the PSMMS’s use of Biology instruction to enhance laboratory knowledge and problem-solving skills (Item 3, M = 3.25, SD = 1.57), despite significant differences in response patterns (Table  5 ).

Concerning students’ responses to the questionnaire items on metacognitive skills (Items 6–15) acquired in their Biology learning practices using the PSMMS, Table  5 shows that the most positive item states that the use of the PSMMS helps set clear learning objectives (Item 7, M = 4.36, SD = 1.09) and evaluates success by asking how well they did (Item 15, M = 4.29, SD = 1.10). Students tended to be less positive about learning Biology using the PSMMS, which is used to create examples and diagrams to make information more meaningful (Item 9, M = 3.83, SD = 1.21), despite the wide range of response patterns (Table  5 ). As a result, using PSMMS in Biology instruction helps students learn essential planning (Items 6–8), implementing (Items 9 and 10), monitoring (Items 11 and 12), and evaluating (Items 13–15) strategies for practice and to learn real-world applications of Biology (Table  5 ).

After data analysis of students’ responses to the survey questions, it was found that the PSMMS instructional approach is effective in helping students acquire problem-solving and metacognitive skills in their Biology learning practices. However, teachers’ responses, classroom observations, and resource availability indicated that the PSMMS approach was not effectively used to improve students’ problem-solving skills and strategies in Biology learning. The study highlights the disadvantages of shortages of laboratory facilities and large class sizes when implementing learner-centered practices in schools. These issues are supported by Kawishe’s (2016) study. Additionally, the PSMMS was not effectively applied in Biology instruction, resulting in students’ inability to develop metacognitive strategies and skills. Therefore, as studies have shown, students face challenges in acquiring metacognitive knowledge and regulation, which are crucial for the development of higher-order thinking skills in Biology learning (Aaltonen & Ikavalko, 2002 ; Lai, 2011 ).

Learning Context Analysis

This section presents the learning context analysis of PSMMS-based Biology instruction for two aspects, namely the availability of instructional resources in laboratories and pedagogical centers and the challenges in implementing the PSMMS in Biology instruction at Shambu Secondary and Preparatory School (ShSPS) and Shambu Secondary School (ShSS). Each is described below.

Availability of Instructional Resources in the Laboratories and Pedagogical Centers

In this section, a physical observation was conducted to assess the availability of instructional resources in Biology laboratories and pedagogical centers. The observation checklists were used to examine the impacts of their availability on Biology instruction using PSMMS.

Concerning the observations of the laboratory resources, it was noted that the two schools have independent Biology laboratories, but their functioning is hindered by poor organization, display tables, and a lack of water supply and waste disposal systems, as shown in Table  6 . Some basic laboratory equipment and chemicals, including dissecting kits, centrifuges, measuring cylinders, protein foods, sodium hydroxide solution, 1% copper (II) sulfate solution, gas syringes, and hydrogen peroxide, are missing. One school, ShSS, has only seven resources out of 20 identified for observation, making it difficult to conduct laboratory activities (Table  6 ).

Regarding the observations of instructional or teaching resources in the pedagogical centers, the results are shown in Table  7 . The results showed that there were no independent or autonomous pedagogical centers in the two schools; instead, they used the Biology department offices as a pedagogical center and kept some teaching and learning aids there. On the other hand, only DNA and RNA models were accessible in ShSPS, while models of DNA and RNA as well as illustrations depicting the organization of animal cell structures were available in ShSS (Table  7 ).

Challenges of Using the PSMMS in Biology Instruction

In this case, the results of interviews with teachers and survey results from students about the challenges they encountered when using the PSMMS in Biology instruction were used. The results of teachers’ and students’ responses are described below.

Teachers’ interview responses regarding the challenges they encountered in implementing the PSMMS in Biology instruction served as the basis for teachers’ perspectives . With the exception of two teachers who gave insignificant responses, the other teachers’ responses were categorized thematically. Therefore, Table  8 contains the response categories by themes, the number of respondents (N), and examples of responses. According to most teachers ( N  = 10), there is a lack of the required up-to-date knowledge, skills, and experience, and for other teachers ( N  = 7), there are shortages of equipment and chemicals (in Biology laboratories) as well as instructional aids (in pedagogical centers), which are challenges of using the PSMMS in Biology instruction. They also mentioned that challenging factors, such as the high student-teacher ratio and time constraints ( N  = 4), students’ deficiency of knowledge and attitudes towards learning ( N  = 3), and problems with school administrative functions ( N  = 1), have an impact on how well students learn Biology while using the PSMMS instructional approach (Table  8 ).

Students’ perspectives , however, were based on their responses to survey questions concerning the challenges of using the PSMMS in Biology lessons, as shown in Table  9 below. The study found statistically significant ( p  < 0.05) differences across the five-item dimensions, with an average mean of 3.62 and a standard deviation of 1.36. Consequently, mean scores above 3 indicated that students agreed with the challenges of implementing the PSMMS in Biology instruction (Table  9 ).

As shown in Table  9 , the majority of students identified two key challenges to successfully implementing the PSMMS in their learning. These are shortages of instructional resources (Item 2, M = 3.56, SD = 1.39) and student difficulty in connecting their prior knowledge with Biological concepts (Item 1, M = 3.44, SD = 1.42). On the other hand, students responded that their teachers had the knowledge and awareness to conduct instructional processes using the PSMMS (Item 4, M = 3.95, SD = 1.22) and had the skills and competence to conduct instructional processes using the PSMMS (Item 5, M = 3.98, SD = 1.35). Table  9 also shows that, despite significant differences in response patterns, students generally had a negative opinion about the dominance of some students in collaborative work (Item 3, M = 3.16, SD = 1.43).

According to the analyzed data, one of the challenging factors was that teachers often lack the required knowledge and skills to facilitate learning, scaffold it, and successfully implement PSMMS in Biology instruction. In contrast, Belland et al. ( 2013 ) suggested that instructional scaffolds increase students’ autonomy, competence, and intimacy, which improves their motivation and enables them to identify appropriate challenges. The other challenging factor that influenced the use of the PSMMS in Biology instruction was the shortage of instructional resources and facilities. Consistent with the studies of Daganaso et al. ( 2020 ) and Kawishe (2016), the use of the PSMMS for Biology instruction faces challenges due to inadequate instructional resources, time constraints, and large class sizes. However, as Eshete (2001) describes, students lack the importance of instructional resources, as instructional resources are necessary for students to learn Biology effectively as they are essential for a deeper understanding of science.

Generally, the important findings from the analyses of the teachers, learners, and learning contexts and their implications for design principles are summarized in Table  10 .

Conclusions

In this study, contexts (teachers, students, and learning) were analyzed with the aim of designing a context-driven problem-solving method with metacognitive scaffolding (PSMMS) for Biology instruction. Despite the potential benefits of the PSMMS, the findings of the current study indicate that the use of the PSMMS instructional approach faces challenges. These challenges include teachers’ lack of the required up-to-date knowledge and skills, students’ lack of awareness and positive attitude towards learning, an overloaded curriculum, scarcity of resources, large class sizes, and problems with school administrative functions. The study emphasizes the significance of context analysis in the design of an effective PSMMS instructional method for enhancing students’ learning in Biology. This analysis provides useful information for providing pertinent examples, practical content, and context-driven instruction.

The context-driven instructional design approach, using the PSMMS, addresses problems in teachers’ effectiveness, students’ effective learning, and the establishment of supportive teaching and learning environments. This approach considers the performance of both teachers and students, as well as the learning environment, including the availability of instructional resources. Consequently, this study concludes that understanding the needs of teachers in relation to the PSMMS can help both teachers and educational policymakers design a system that is well-suited to their specific requirements. Additionally, it can help students use their practical skills as well as establish connections between their prior knowledge and the Biology concepts they are learning. This process has the potential to generate innovative systems for applying the PSMMS instructional approach, with teachers serving as facilitators and students actively engaging and taking responsibility for their own learning progress.

The study investigated the importance of incorporating target groups into the design of the PSMMS for Biology instruction. The study’s empirical findings support the notion that the PSMMS should provide regular learning opportunities and foster the active engagement of teachers. The study also emphasizes the need to consider learning contexts while designing the PSMMS for Biology instruction that is deeply rooted in its particular context, as effective principles applied in one context could not yield the same results in another context. The study suggests that this strategy is particularly useful in developing countries like Ethiopia, where there is limited experience with metacognitive strategies to scaffold the problem-solving method in Biology instruction. As a result, the authors recommend expanding the target audience, considering the national context, and incorporating metacognitive knowledge and regulation strategies in designing context-driven PSMMS for secondary school Biology instruction.

Data Availability

The authors confirm that the results of this study are available in the article and its supplementary material, and raw data can be obtained from the corresponding author upon reasonable request.

Aaltonen, P., & Ikavalko, H. (2002). Implementing strategies successfully. Integrated Manufacturing Systems , 13 (6), 415–418.

Article   Google Scholar  

Agaba, K. C. (2013). Effect of Concept Mapping Instructional Strategy on Students Retention in Biology. African Education Indices , 5 (1), 1–8.

Google Scholar  

Agena, D. (2010). Case Study: Ethiopia UNICEF .

Ahmady, G., & Nakhostin-Ruhi, N. (2014). The effect of problem-solving method on improving primary students’ mathematics achievement and creativity. Mathematics Education , 68 , 22708–22710.

Al Azmy, K. A., & Alebous, T. M. (2020). The degree of using metacognitive thinking strategies skills for problem-solving by a sample of biology female teachers at the secondary stage in the state of Kuwait. Educational Research and Reviews , 15 (12), 764–774. https://doi.org/10.5897/ERR2020.4094 .

Albay, E. M. (2019). Analyzing the effects of the problem-solving approach to the performance and attitude of first-year university students. Social Sciences & Humanities Open , 1 (1), 1–7. https://doi.org/10.1016/j.ssaho.2019.100006 .

Aurah, C. M., Koloi-Keaikitse, S., Isaacs, C., & Finch, H. (2011). The role of metacognition in everyday problem-solving among primary students in Kenya. Problems of Education in the 21st Century , 30 (2011), 9–21.

Belland, B. R., Kim, C., & Hannafin, M. J. (2013). A framework for designing scaffolds that improve motivation and cognition. Educational Psychologist , 48 (4), 243–270. https://doi.org/10.1080/00461520.2013.838920 .

Beyessa, F. (2014). Major factors that affect grade 10 students’ academic achievement in science education at Ilu Ababora general secondary of Oromia regional state, Ethiopia. International Letters of Social and Humanistic Sciences , 32 (21), 118–134. https://doi.org/10.18052/www.scipress.com/ILSHS.32.118 .

Chandio, M. T., Pandhiani, S. M., & Iqbal, R. (2016). Bloom’s Taxonomy: Improving Assessment and Teaching-Learning Process. Journal of Education and Educational Development , 3 (2), 203–221.

Chu, S. K. W., Reynolds, R. B., Tavares, N. J., Notari, M., & Lee, C. W. Y. (2017). 21st century skills development through inquiry-based learning from theory to practice . Springer International Publishing.

Cimer, A. (2012). What makes biology learning difficult and effective: Students’ views. Educational Research and Reviews , 7 (3), 61–71. https://doi.org/10.5897/ERR11.205 .

Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches (3rd ed.). SAGE Publications. Inc.

Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). SAGE Publications, Inc.

Daganaso, R. O., Macasadogs, D. V. C., Tan, M. L. G., Pilande, C. J. A., Calipayan, N. J., & Santos, A. G. D. L (2020). Overcoming challenges in the use of teaching strategies: The case of grade eight biology teachers. Journal of International Academic Research for Multidisciplinary , 8 (1), 25–36.

Darling-Hammond, L., Flook, L., Cook-Harvey, C., Barron, B., & Osher, D. (2020). Implications for Educational Practice of the Science of Learning and Development. Applied Developmental Science , 24 (2), 97–140. https://doi.org/10.1080/10888691.2018.1537791 .

Dawal, B. S., & Mangut, M. (2021). Overloaded curriculum content: Factor responsible for students’ under achievement in basic science and technology in junior secondary schools in Plateau state, Nigeria. KIU Journal of Social Sciences , 7 (2), 123–128.

ETP. (1994). The Federal Democratic Republic of Ethiopia Education and Training Policy . St. George Printing.

Ganyaupfu, E. M. (2013). Teaching methods and students’ academic performance. International Journal of Humanities and Social Science Invention , 2 (9), 29–35.

Georghiades, P. (2000). Beyond conceptual change learning in science education: Focusing on transfer, durability, and Metacognition. Educational Research , 42 (2), 119–139.

Getenet, S. T. (2020). Designing a professional development program for mathematics teachers for effective use of technology in teaching. Education and Information Technologies , 25 (3), 1855–1873. https://doi.org/10.1007/s10639-019-10056-8 .

Guner, P., & Erbay, H. N. (2021). Metacognitive skills and problem-solving. International Journal of Research in Education and Science (IJRES) , 7 (3), 715–734. https://doi.org/10.46328/ijres.1594 .

Guterman, E. (2002). Toward Dynamic Assessment of Reading: Applying Metacognitive Awareness Guidance to Reading Assessment Tasks. Journal of Research in Reading , 25 (3), 283–298.

Howard, B. C., McGee, S., Shia, R., & Hong, N. S. (2001). The Influence of Metacognitive Self-Regulation and Ability Levels on Problem-Solving .

Hyder, I., & Bhamani, S. (2016). Bloom’s taxonomy (cognitive domain) in higher education settings: Reflection brief. Journal of Education and Educational Development , 3 (2), 288–300.

Inel, D., & Balim, A. G. (2010). The effects of using problem-based learning in science and technology teaching upon students’ academic achievement and levels of structuring concepts. Asia-Pacific Forum on Science Learning and Teaching , 11 (2), 1–23.

Kallio, H., Virta, K., Kallio, M., Virta, A., Hjardemaal, F. R., & Sandven, J. (2017). The utility of the metacognitive awareness inventory for teachers among in-service teachers. Journal of Education and Learning , 6 (4), 78–91. https://doi.org/10.5539/jel.v6n4p78 .

Kapa, E. (2001). A metacognitive support during the process of problem-solving in a computerized environment. Educational Studies in Mathematics , 47 (3), 317–336.

Khaparde, R. (2019). Experimental problem-solving: A plausible approach for conventional laboratory courses. Journal of Physics: Conference Series , 1286 (1), 1–7. https://doi.org/10.1088/1742-6596/1286/1/012031 .

Kim, N. J., Belland, B. R., & Axelrod, D. (2019). Scaffolding for optimal challenge in K–12 problem-based learning. Interdisciplinary Journal of Problem-Based Learning , 13 (1), 3–26. https://doi.org/10.7771/1541-5015.1712 .

Lai, E. R. (2011). Metacognition: A literature review. Pearson Research Report , 24 , 1–40. http://www.pearsonassessments.com/research .

MoE (2020). Ministry of Education Concept Note for Education Sector COVID 19-Preparedness and Response Plan .

MoE (2019). Federal Democratic Republic of Ethiopia Ministry of Education Curriculum for Doctor of Education in Biology .

MoE (2009). The Federal Democratic Republic of Ethiopia, Ministry of Education, Curriculum Framework for Ethiopian Education (KG – Grade 12) .

MoE (2005). The Federal Democratic Republic of Ethiopia: Education Sector Development Program III (ESDP-III) 2005/2006–2010/2011 (1998 EFY – 2002 EFY) Program Action Plan (PAP) .

Negash, T. (2006). Education in Ethiopia from Crisis to the Brink of Collapse . Nordiska Afrikainstitutet.

Nnorom, N. R. (2019). Effect of problem-based solving technique on secondary school students achievement in biology. International Journal of Scientific & Engineering Research , 10 (3), 1025–1029.

Okoro, C. O., & Chukwudi, E. K. (2011). Metacognitive strategies: A viable tool for self-directed learning. Journal of Educational and Social Research , 1 (4), 71–76.

Peterson, C. (2003). Bringing ADDIE to life: Instructional design at its best. Journal of Educational Multimedia and Hypermedia , 12 (3), 227–241.

Rahmawati, D., Sajidan, S., & Ashadi, A. (2018). Analysis of Problem-Solving Skill in Learning Biology at Senior High School of Surakarta. International Conference on Science Education (ICoSEd) , 1006 , 1–5. https://doi.org/10.1088/1742-6596/1006/1/012014 .

Reich, Y., Kolberg, E., & Levin, I. (2006). Designing contexts for learning design. International Journal of Engineering Education , 22 (3), 489–495.

Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education , 36 , 111–139. https://doi.org/10.1007/s11165-005-3917-8 .

Senyigit, C. (2021). The effect of problem-based learning on pre-service primary school teachers’ conceptual understanding and misconceptions. International Online Journal of Primary Education (IOJPE) , 10 (1), 50–72.

Sperling, R. A., Howard, B. C., Staley, R., & DuBois, N. (2004). Metacognition and self-regulated learning constructs. Educational Research and Evaluation: An International Journal on Theory and Practice , 10 (2), 117–139. https://doi.org/10.1076/edre.10.2.117.27905 .

Stehle, S. M., & Peters-Burton, E. E. (2019). Developing student 21st century skills in selected exemplary inclusive STEM high schools. International Journal of STEM Education , 6 (1), 1–15. https://doi.org/10.1186/s40594-019-0192-1 .

Syofyan, R., & Siwi, M. K. (2018). The impact of visual, auditory, and kinesthetic learning styles on economics education teaching. Advances in Economics, Business, and Management Research , 57 , 642–649.

Tachie, S. A. (2019). Metacognitive skills and strategies application: How this helps learners in mathematics problem-solving. EURASIA Journal of Mathematics Science and Technology Education , 15 (5), 1–12. https://doi.org/10.29333/ejmste/105364 .

Tosun, C., & Senocak, E. (2013). The effects of problem-based learning on metacognitive awareness and attitudes toward chemistry of prospective teachers with different academic backgrounds. Australian Journal of Teacher Education , 38 (3), 61–73.

Umar, A. A. (2011). Effects of biology practical activities on students’ process skill acquisition in Minna, Nigeria state. Journal of Science Technology Mathematics and Education (JOSTMED) , 7 (2), 120–128.

Wang, F., & Hannafin, M. J. (2005). Design-based research and technology-enhanced learning environments. Educational Technology Research and Development , 53 (4), 5–23.

Widya, Rifandi, R., & Rahmi, Y. L. (2019). STEM education to fulfill the 21st century demand: A literature review. Journal of Physics: Conference Series , 1317 , 1–7. https://doi.org/10.1088/1742-6596/1317/1/012208 .

Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical background, methodological developments, and future prospects. American Educational Research Journal , 45 (1), 166–183. https://doi.org/10.3102/0002831207312909 .

Zumbrunn, S., Tadlock, J., & Roberts, E. D. (2011). Encouraging self-regulated learning in the classroom: A review of the literature. Metropolitan Educational Research Consortium (MERC) , 1–28.

Download references

Acknowledgements

The authors would like to thank the teachers and students of Shambu Secondary Schools, Jimma University, and Shambu College of Teachers Education for their invaluable contributions in terms of information, resources, and financial support.

This editorial has not received financial support from any funding organizations.

Author information

Authors and affiliations.

College of Natural Sciences, Department of Biology, Jimma University, Jimma, Ethiopia

Merga Dinssa Eticha & Tsige Ketema

Department of Biology, Shambu College of Teachers Education, Shambu, Ethiopia

Merga Dinssa Eticha

Department of Curriculum and Instructional Sciences, Kotebe University of Education, Addis Ababa, Ethiopia

Adula Bekele Hunde

You can also search for this author in PubMed   Google Scholar

Contributions

Merga Dinssa Eticha : Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Writing-original draft, Writing-review and editing.

Adula Bekele Hunde : Conceptualization, Methodology, Validation, Investigation, Supervision, Writing-review and editing.

Tsige Ketema : Conceptualization, Methodology, Validation, Investigation, Supervision, Writing-review and editing.

Corresponding author

Correspondence to Merga Dinssa Eticha .

Ethics declarations

Ethical approval.

All procedures performed in studies involving human participants followed the ethical standards of institutional and national research committees. Therefore, approval to conduct the research was accepted by the university’s institutional review board, and ethical guidelines were followed in conducting this study.

Competing Interests

The authors declare no conflicting and competing interests.

Informed Consent

All individual participants involved in the study provided informed consent.

Statement Regarding Research Involving Human Participants and/or Animals

This study entailed the involvement of human subjects and was conducted in accordance with ethical standards, which encompassed the principles of informed consent and approval from an ethics committee.

Consent to Participate

Consent was obtained from all individual participants involved in the study after ensuring that they were fully informed. To protect their privacy, participants’ names will not be linked to any publication or presentation that uses the data and research collected. Instead, the authors used codes to identify participants. Disclosure of identifiable information will only occur if required by law or with the written consent of the participant. Participants participated in the study voluntarily and had the option to withdraw at any time.

Consent to Publish

The authors hereby affirm that the participants in the human research have given their consent for the publication of the details in the journal and article.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Eticha, M.D., Hunde, A.B. & Ketema, T. Designing a Context-Driven Problem-Solving Method with Metacognitive Scaffolding Experience Intervention for Biology Instruction. J Sci Educ Technol (2024). https://doi.org/10.1007/s10956-024-10107-x

Download citation

Accepted : 27 February 2024

Published : 27 August 2024

DOI : https://doi.org/10.1007/s10956-024-10107-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Biology learning
  • Context analysis
  • Metacognitive scaffolding
  • Problem-solving method
  • Find a journal
  • Publish with us
  • Track your research
  • DOI: 10.1088/2631-8695/ad5f14
  • Corpus ID: 271035574

Micro-expression recognition based on euler video magnification and 3D residual network under imbalanced sample

  • Liangyu Zhu , Yujun He , +2 authors Xiangqian Long
  • Published in Engineering Research Express 3 July 2024
  • Computer Science

Related Papers

Showing 1 through 3 of 0 Related Papers

IMAGES

  1. Research Problem Statement Examples : FREE 9+ Problem Statement Samples

    research problem examples for students

  2. Research Problem Statement Examples

    research problem examples for students

  3. Research Problem Statement Write three research

    research problem examples for students

  4. Research Problem Statement Examples

    research problem examples for students

  5. Research Problem Statement Examples : Welcome to the Purdue OWL

    research problem examples for students

  6. Research Problem Generator for School & University Students

    research problem examples for students

COMMENTS

  1. 45 Research Problem Examples & Inspiration (2024)

    A Note from Chris: Students tend to think they need to find a new or innovative research problem.This is a mistake. I recommend choosing a problem without worrying about if it's been studied before. You can find a new or innovative angle later - it might be a different methodology, theoretical frame, set of research participants, or even a different setting, that will set your work apart ...

  2. 35 Research Paper Problem Topics & Examples for Students

    The problem of global hunger. Underemployment and unemployment. Balancing safety and the right to have private information. Manipulative advertising. Teaching children to spend more time offline. Cheating at schools and colleges. The problem of corruption. The choice of religion for the children from religious families.

  3. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  4. How to Define a Research Problem

    A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge. Some research will do both of these things, but usually the research problem focuses on one or the other.

  5. Research Problem

    Feasibility: A research problem should be feasible in terms of the availability of data, resources, and research methods. It should be realistic and practical to conduct the study within the available time, budget, and resources. Novelty: A research problem should be novel or original in some way.

  6. What is a Research Problem? Characteristics, Types, and Examples

    Characteristics, Types, and Examples. August 22, 2023 Sunaina Singh. Knowing the basics of defining a research problem is instrumental in formulating a research inquiry. A research problem is a gap in existing knowledge, a contradiction in an established theory, or a real-world challenge that a researcher aims to address in their research.

  7. 1000+ Research Topics & Research Title Examples For Students

    A research topic and a research problem are two distinct concepts that are often confused. A research topic is a broader label that indicates the focus of the study, while a research problem is an issue or gap in knowledge within the broader field that needs to be addressed.. To illustrate this distinction, consider a student who has chosen "teenage pregnancy in the United Kingdom" as ...

  8. Research Question Examples ‍

    A well-crafted research question (or set of questions) sets the stage for a robust study and meaningful insights. But, if you're new to research, it's not always clear what exactly constitutes a good research question. In this post, we'll provide you with clear examples of quality research questions across various disciplines, so that you can approach your research project with confidence!

  9. The Research Problem & Problem Statement

    A research problem can be theoretical in nature, focusing on an area of academic research that is lacking in some way. Alternatively, a research problem can be more applied in nature, focused on finding a practical solution to an established problem within an industry or an organisation. In other words, theoretical research problems are motivated by the desire to grow the overall body of ...

  10. Writing Strong Research Questions

    A good research question is essential to guide your research paper, dissertation, or thesis. All research questions should be: Focused on a single problem or issue. Researchable using primary and/or secondary sources. Feasible to answer within the timeframe and practical constraints. Specific enough to answer thoroughly.

  11. How to Write a Research Problem Example: Step-by-Step Instructions

    To demonstrate the significance of your research problem, you need to provide context and background information. Explain where the problem arises and who is affected by it. In theoretical research, review relevant literature to show the gap your study aims to fill. Highlight the practical implications of solving this problem and how it can ...

  12. The Research Problem/Question

    A research problem is a definite or clear expression [statement] about an area of concern, a condition to be improved upon, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or within existing practice that points to a need for meaningful understanding and deliberate investigation.

  13. #6 Developing Successful Research Questions

    One can be used as a handout for students while the other can serve as a sample answer key. The document is best used as part of a process. For instance, perhaps starting with discussing the issues and potential research questions, moving on to problems and social significance but returning to proposals/solutions at a later date.

  14. Top 10 Research Topics for Students

    2. Psychology research paper topics. Psychology is a broadly studied topic with many possible avenues for exploration. Whether you'd like to understand how the human brain works, ways to boost mental health, or treatment options in psychology, there are endless options.

  15. Examples of Quantitative Research Questions

    Quantitative research involves collecting and analyzing numerical data to answer research questions and test hypotheses. These questions typically seek to understand the relationships between variables, predict outcomes, or compare groups. Let's explore some examples of quantitative research questions across different fields: Education:

  16. How to Write a Research Question: Types and Examples

    Choose a broad topic, such as "learner support" or "social media influence" for your study. Select topics of interest to make research more enjoyable and stay motivated. Preliminary research. The goal is to refine and focus your research question. The following strategies can help: Skim various scholarly articles.

  17. Research Problem ~ Explanation & Examples

    Research Problem - In a Nutshell. A research problem is an issue that raises concern about a particular topic. Researchers formulate research problems by examining other literature on the topic and assessing the significance and relevance of the problem.; Creating a research problem involves an overview of a broad problem area and then narrowing it down to the specifics by creating a ...

  18. Research Questions, Objectives & Aims (+ Examples)

    Research Aims: Examples. True to the name, research aims usually start with the wording "this research aims to…", "this research seeks to…", and so on. For example: "This research aims to explore employee experiences of digital transformation in retail HR.". "This study sets out to assess the interaction between student ...

  19. What is a Problem Statement in Research? How to Write It with Examples

    Examples of problem statement in research proposal. To put what we learned into practice, let's look at an example of a problem statement in a research report. ... this study addresses is the lack of regulative measures to control consumption of digital content by young university students, which negatively impacts their attention span".

  20. Research Problem

    A research problem is a specific issue or gap in knowledge that a researcher aims to address through systematic investigation. It forms the foundation of a study, guiding the research question, research design, and potential outcomes. Identifying a clear research problem is crucial as it often emerges from existing literature, theoretical ...

  21. How to Write a Research Problem? Tips and Examples

    Remember, choosing a research problem offers an opportunity to contribute meaningfully to your field of study and potentially inspire future research. ** Photo by Freepik. What Are the Key Components of a Research Problem? It should include the following elements: 1. Background information: Provide context for your research problem. 2.

  22. (PDF) Identifying and Formulating the Research Problem

    An Example of Research problem Statement Using the "Ide al, Reality, and . Consequences" Format ... Research methods for busi ness students (5 th. Ed). Harlow: Pearson Education.

  23. How to Define a Research Problem

    A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge. Some research will do both of these things, but usually the research problem focuses on one or the other.

  24. Best Education Research Topics

    Research could explore the reasons why some students struggle to stay enrolled, such as academic challenges, student mental health issues, and financial pressures. Additionally, studies could investigate the effectiveness of programs and services designed to support student retention, such as academic advising, tutoring centers, and mental ...

  25. Designing a Context-Driven Problem-Solving Method with ...

    Learner-centered instructional practices, such as the metacognitive strategies scaffolding the problem-solving method for Biology instruction, have been shown to promote students' autonomy and self-direction, significantly enhancing their understanding of scientific concepts. Thus, this study aimed to elucidate the importance and procedures of context analysis in the development of a context ...

  26. Micro-expression recognition based on euler video magnification and 3D

    The proposed micro-expression recognition method based on Eulerian Video Magnification and a 3D Residual Network under imbalanced samples can assist in teaching evaluation and promote the development of smart classrooms, and further research is needed on the storage and computing of the proposed method on devices. A student's verbal behavior plays a crucial role in education, while nonverbal ...