Reset password New user? Sign up

Existing user? Log in

Hypothesis Testing

Already have an account? Log in here.

A hypothesis test is a statistical inference method used to test the significance of a proposed (hypothesized) relation between population statistics (parameters) and their corresponding sample estimators . In other words, hypothesis tests are used to determine if there is enough evidence in a sample to prove a hypothesis true for the entire population.

The test considers two hypotheses: the null hypothesis , which is a statement meant to be tested, usually something like "there is no effect" with the intention of proving this false, and the alternate hypothesis , which is the statement meant to stand after the test is performed. The two hypotheses must be mutually exclusive ; moreover, in most applications, the two are complementary (one being the negation of the other). The test works by comparing the \(p\)-value to the level of significance (a chosen target). If the \(p\)-value is less than or equal to the level of significance, then the null hypothesis is rejected.

When analyzing data, only samples of a certain size might be manageable as efficient computations. In some situations the error terms follow a continuous or infinite distribution, hence the use of samples to suggest accuracy of the chosen test statistics. The method of hypothesis testing gives an advantage over guessing what distribution or which parameters the data follows.

Definitions and Methodology

Hypothesis test and confidence intervals.

In statistical inference, properties (parameters) of a population are analyzed by sampling data sets. Given assumptions on the distribution, i.e. a statistical model of the data, certain hypotheses can be deduced from the known behavior of the model. These hypotheses must be tested against sampled data from the population.

The null hypothesis \((\)denoted \(H_0)\) is a statement that is assumed to be true. If the null hypothesis is rejected, then there is enough evidence (statistical significance) to accept the alternate hypothesis \((\)denoted \(H_1).\) Before doing any test for significance, both hypotheses must be clearly stated and non-conflictive, i.e. mutually exclusive, statements. Rejecting the null hypothesis, given that it is true, is called a type I error and it is denoted \(\alpha\), which is also its probability of occurrence. Failing to reject the null hypothesis, given that it is false, is called a type II error and it is denoted \(\beta\), which is also its probability of occurrence. Also, \(\alpha\) is known as the significance level , and \(1-\beta\) is known as the power of the test. \(H_0\) \(\textbf{is true}\)\(\hspace{15mm}\) \(H_0\) \(\textbf{is false}\) \(\textbf{Reject}\) \(H_0\)\(\hspace{10mm}\) Type I error Correct Decision \(\textbf{Reject}\) \(H_1\) Correct Decision Type II error The test statistic is the standardized value following the sampled data under the assumption that the null hypothesis is true, and a chosen particular test. These tests depend on the statistic to be studied and the assumed distribution it follows, e.g. the population mean following a normal distribution. The \(p\)-value is the probability of observing an extreme test statistic in the direction of the alternate hypothesis, given that the null hypothesis is true. The critical value is the value of the assumed distribution of the test statistic such that the probability of making a type I error is small.
Methodologies: Given an estimator \(\hat \theta\) of a population statistic \(\theta\), following a probability distribution \(P(T)\), computed from a sample \(\mathcal{S},\) and given a significance level \(\alpha\) and test statistic \(t^*,\) define \(H_0\) and \(H_1;\) compute the test statistic \(t^*.\) \(p\)-value Approach (most prevalent): Find the \(p\)-value using \(t^*\) (right-tailed). If the \(p\)-value is at most \(\alpha,\) reject \(H_0\). Otherwise, reject \(H_1\). Critical Value Approach: Find the critical value solving the equation \(P(T\geq t_\alpha)=\alpha\) (right-tailed). If \(t^*>t_\alpha\), reject \(H_0\). Otherwise, reject \(H_1\). Note: Failing to reject \(H_0\) only means inability to accept \(H_1\), and it does not mean to accept \(H_0\).
Assume a normally distributed population has recorded cholesterol levels with various statistics computed. From a sample of 100 subjects in the population, the sample mean was 214.12 mg/dL (milligrams per deciliter), with a sample standard deviation of 45.71 mg/dL. Perform a hypothesis test, with significance level 0.05, to test if there is enough evidence to conclude that the population mean is larger than 200 mg/dL. Hypothesis Test We will perform a hypothesis test using the \(p\)-value approach with significance level \(\alpha=0.05:\) Define \(H_0\): \(\mu=200\). Define \(H_1\): \(\mu>200\). Since our values are normally distributed, the test statistic is \(z^*=\frac{\bar X - \mu_0}{\frac{s}{\sqrt{n}}}=\frac{214.12 - 200}{\frac{45.71}{\sqrt{100}}}\approx 3.09\). Using a standard normal distribution, we find that our \(p\)-value is approximately \(0.001\). Since the \(p\)-value is at most \(\alpha=0.05,\) we reject \(H_0\). Therefore, we can conclude that the test shows sufficient evidence to support the claim that \(\mu\) is larger than \(200\) mg/dL.

If the sample size was smaller, the normal and \(t\)-distributions behave differently. Also, the question itself must be managed by a double-tail test instead.

Assume a population's cholesterol levels are recorded and various statistics are computed. From a sample of 25 subjects, the sample mean was 214.12 mg/dL (milligrams per deciliter), with a sample standard deviation of 45.71 mg/dL. Perform a hypothesis test, with significance level 0.05, to test if there is enough evidence to conclude that the population mean is not equal to 200 mg/dL. Hypothesis Test We will perform a hypothesis test using the \(p\)-value approach with significance level \(\alpha=0.05\) and the \(t\)-distribution with 24 degrees of freedom: Define \(H_0\): \(\mu=200\). Define \(H_1\): \(\mu\neq 200\). Using the \(t\)-distribution, the test statistic is \(t^*=\frac{\bar X - \mu_0}{\frac{s}{\sqrt{n}}}=\frac{214.12 - 200}{\frac{45.71}{\sqrt{25}}}\approx 1.54\). Using a \(t\)-distribution with 24 degrees of freedom, we find that our \(p\)-value is approximately \(2(0.068)=0.136\). We have multiplied by two since this is a two-tailed argument, i.e. the mean can be smaller than or larger than. Since the \(p\)-value is larger than \(\alpha=0.05,\) we fail to reject \(H_0\). Therefore, the test does not show sufficient evidence to support the claim that \(\mu\) is not equal to \(200\) mg/dL.

The complement of the rejection on a two-tailed hypothesis test (with significance level \(\alpha\)) for a population parameter \(\theta\) is equivalent to finding a confidence interval \((\)with confidence level \(1-\alpha)\) for the population parameter \(\theta\). If the assumption on the parameter \(\theta\) falls inside the confidence interval, then the test has failed to reject the null hypothesis \((\)with \(p\)-value greater than \(\alpha).\) Otherwise, if \(\theta\) does not fall in the confidence interval, then the null hypothesis is rejected in favor of the alternate \((\)with \(p\)-value at most \(\alpha).\)

  • Statistics (Estimation)
  • Normal Distribution
  • Correlation
  • Confidence Intervals

Problem Loading...

Note Loading...

Set Loading...

Statistics/Hypothesis Testing


  • 1 Introduction
  • 2 Basic concepts and terminologies
  • 3 Evaluating a hypothesis test
  • 4.1 Neyman-Pearson lemma
  • 4.2 Likelihood-ratio test
  • 5 Relationship between hypothesis testing and confidence intervals

Introduction

In previous chapters, we have discussed two methods for estimating unknown parameters , namely point estimation and interval estimation . Estimating unknown parameters is an important area in statistical inference, and in this chapter we will discuss another important area, namely hypothesis testing , which is related to decision making . Indeed, the concepts of confidence intervals and hypothesis testing are closely related, as we will demonstrate.

Basic concepts and terminologies

Before discussing how to conduct hypothesis testing, and evaluate the "goodness" of a hypothesis test, let us introduce some basic concepts and terminologies related to hypothesis testing first.

Definition. (Hypothesis) A (statistical) hypothesis is a statement about population parameter(s).

There are two terms that classify hypotheses:

Definition. (Simple and composite hypothesis) A hypothesis is a simple hypothesis if it completely specifies the distribution of the population (that is, the distribution is completely known, without any unknown parameters involved), and is a composite hypothesis otherwise.

Sometimes, it is not immediately clear that whether a hypothesis is simple or composite. To understand the classification of hypotheses more clearly, let us consider the following example.

{\displaystyle \theta }

  • (a) and (b) are simple hypotheses, since they all completely specifies the distribution.

In hypothesis tests, we consider two hypotheses:

{\displaystyle H_{0}}

Example. Suppose your friend gives you a coin for tossing, and we do not know whether it is fair or not. However, since the coin is given by your friend, you believe that the coin is fair unless there are sufficient evidences suggesting otherwise. What is the null hypothesis and alternative hypothesis in this context (suppose the coin never land on edge)?

{\displaystyle p}

  • Of course, in some other places, the saying of "accepting null hypothesis" is avoided because of these philosophical issues.

Now, we are facing with two questions. First, what evidences should we consider? Second, what is meant by "sufficient"? For the first question, a natural answer is that we should consider the observed samples , right? This is because we are making hypothesis about the population, and the samples are taken from, and thus closely related to the population, which should help us make the decision.

Let us formally define the terms related to hypothesis testing in the following.

{\displaystyle \varphi }

  • Graphically, it looks like

{\displaystyle {\overline {X}}}

  • We use the terminology "tail" since the rejection region includes the values that are located at the "extreme portions" (i.e., very left (with small values) or very right (with large values) portions) (called tails) of distributions.

{\displaystyle k_{3}=-k_{4}}

  • We sometimes also call upper-tailed and lower-tailed tests as one-sided tests , and two-tailed tests as two-sided tests .

{\displaystyle R=\{(x_{1},x_{2},x_{3}):x_{1}+x_{2}+x_{3}>6\}}

Exercise. What is the type of this hypothesis test?

Right-tailed test.

As we have mentioned, the decisions made by hypothesis test should not be perfect, and errors occur. Indeed, when we think carefully, there are actually two types of errors, as follows:

We can illustrate these two types of errors more clearly using the following table.

Type I and II errors
Accept Reject
is true Correct decision Type I error
is false Type II error Correct decision

{\displaystyle H_{1}:\theta \in \Theta _{0}^{c}}

  • The power function will be our basis in evaluating the goodness of a test or comparing two different tests.

{\displaystyle H_{0}:p\leq {\frac {1}{2}}\quad {\text{vs.}}\quad H_{1}:p>{\frac {1}{2}}}

You notice that the type II error of this hypothesis test can be quite large, so you want to revise the test to lower the type II error.

{\displaystyle \beta (p)}

To describe "control the type I error probability at this level" in a more precise way, let us define the following term.

{\displaystyle \pi (\theta )}

  • Intuitively, we choose the maximum probability of type I error to be the size so that the size can tell us how probable type I error occurs in the worst situation , to show that how "well" can the test control the type I error [ 4 ] .

{\displaystyle \theta _{0}}

Exercise. Calculate the type I error probability and type II error probability when the sample size is 12 (the rejection region remains unchanged).

{\displaystyle \mathbb {P} (Z<{\sqrt {12}}(20.51861-21))\approx \mathbb {P} (Z<-1.668)\approx 0.04746.}

  • Case 3 : The test is two-tailed.

{\displaystyle T}

  • For case 3 subcase 1 , consider the following diagram:
  • For case 3 subcase 2 , consider the following diagram:

{\displaystyle t}

0.01
0.04
0.06
0.08
0.1

Evaluating a hypothesis test

After discussing some basic concepts and terminologies, let us now study some ways to evaluate goodness of a hypothesis test. As we have previously mentioned, we want the probability of making type I errors and type II errors to be small, but we have mentioned that it is generally impossible to make both probabilities to be arbitrarily small. Hence, we have suggested to control the type I error, using the size of a test, and the "best" test should the one with the smallest probability of making type II error, after controlling the type I error.

These ideas lead us to the following definitions.

{\displaystyle 1-\beta }

Using this definition, instead of saying "best" test (test with the smallest type II error probability), we can say "a test with the most power", or in other words, the "most powerful test".

{\displaystyle H_{0}:\theta \in \Theta _{0}\quad {\text{vs.}}\quad H_{1}:\theta \in \Theta _{1}}

Constructing a hypothesis test

Neyman-pearson lemma.

{\displaystyle f(x;\theta )}

For the case where the underlying distribution is discrete, the proof is very similar (just replace the integrals with sums), and hence omitted.

{\displaystyle {\frac {{\mathcal {L}}(\theta _{0};\mathbf {x} )}{{\mathcal {L}}(\theta _{1};\mathbf {x} )}}}

  • In fact, the MP test constructed by Neyman-Pearson lemma is a variant from the likelihood-ratio test , which is more general in the sense that the likelihood-ratio test can also be constructed for composite null and alternative hypotheses, apart from simple null and alternative hypotheses directly. But, the likelihood-ratio test may not be (U)MP. We will discuss likelihood-ratio test later.

{\displaystyle {\mathcal {L}}(\theta _{0};\mathbf {x} )}

  • This rejection region has appeared in a previous example.

Now, let us consider another example where the underlying distribution is discrete.

{\displaystyle {\begin{array}{c|ccccccccc}\theta &x&1&2&3&4&5&6&7&8\\\hline 0&f(x;\theta )&0&0.02&0.02&0.02&0.02&0.02&0.02&0.88\\1&f(x;\theta )&0.01&0.02&0.03&0.04&0.05&0&0.06&0.79\\\end{array}}}

Exercise. Calculate the probability of making type II error for the above test.

{\displaystyle \beta (1)=\mathbb {P} _{\theta =1}(X\in R^{c})=\mathbb {P} _{\theta =1}(X=8)+\mathbb {P} _{\theta =1}(X=6)=0.79.}

Likelihood-ratio test

Previously, we have suggested using the Neyman-Pearson lemma to construct MPT for testing simple null hypothesis against simple alternative hypothesis. However, when the hypotheses are composite, we may not be able to use the Neyman-Pearson lemma. So, in the following, we will give a general method for constructing tests for any hypotheses, not limited to simple hypotheses. But we should notice that the tests constructed are not necessarily UMPT.

{\displaystyle \lambda (\mathbf {x} )={\frac {\sup _{\theta \in \Theta _{0}}{\mathcal {L}}(\theta ;\mathbf {x} )}{\sup _{\theta \in \Theta }{\mathcal {L}}(\theta ;\mathbf {x} )}}}

  • When the simple and alternative hypotheses are simple, the likelihood ratio test will be the same as the test suggested in the Neyman-Pearson lemma.

Relationship between hypothesis testing and confidence intervals

We have mentioned that there are similarities between hypothesis testing and confidence intervals. In this section, we will introduce a theorem suggesting how to construct a hypothesis test from a confidence interval (or in general, confidence set ), and vice versa.

{\displaystyle R(\theta _{0})}

  • ↑ Thus, a natural measure of "goodness" of a hypothesis test is its "size of errors". We will discuss these later in this chapter.

define hypothesis testing wikipedia

  • Book:Statistics

Navigation menu

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

define hypothesis testing wikipedia

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved September 2, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Hypothesis Testing: Uses, Steps & Example

By Jim Frost 4 Comments

What is Hypothesis Testing?

Hypothesis testing in statistics uses sample data to infer the properties of a whole population . These tests determine whether a random sample provides sufficient evidence to conclude an effect or relationship exists in the population. Researchers use them to help separate genuine population-level effects from false effects that random chance can create in samples. These methods are also known as significance testing.

Data analysts at work.

For example, researchers are testing a new medication to see if it lowers blood pressure. They compare a group taking the drug to a control group taking a placebo. If their hypothesis test results are statistically significant, the medication’s effect of lowering blood pressure likely exists in the broader population, not just the sample studied.

Using Hypothesis Tests

A hypothesis test evaluates two mutually exclusive statements about a population to determine which statement the sample data best supports. These two statements are called the null hypothesis and the alternative hypothesis . The following are typical examples:

  • Null Hypothesis : The effect does not exist in the population.
  • Alternative Hypothesis : The effect does exist in the population.

Hypothesis testing accounts for the inherent uncertainty of using a sample to draw conclusions about a population, which reduces the chances of false discoveries. These procedures determine whether the sample data are sufficiently inconsistent with the null hypothesis that you can reject it. If you can reject the null, your data favor the alternative statement that an effect exists in the population.

Statistical significance in hypothesis testing indicates that an effect you see in sample data also likely exists in the population after accounting for random sampling error , variability, and sample size. Your results are statistically significant when the p-value is less than your significance level or, equivalently, when your confidence interval excludes the null hypothesis value.

Conversely, non-significant results indicate that despite an apparent sample effect, you can’t be sure it exists in the population. It could be chance variation in the sample and not a genuine effect.

Learn more about Failing to Reject the Null .

5 Steps of Significance Testing

Hypothesis testing involves five key steps, each critical to validating a research hypothesis using statistical methods:

  • Formulate the Hypotheses : Write your research hypotheses as a null hypothesis (H 0 ) and an alternative hypothesis (H A ).
  • Data Collection : Gather data specifically aimed at testing the hypothesis.
  • Conduct A Test : Use a suitable statistical test to analyze your data.
  • Make a Decision : Based on the statistical test results, decide whether to reject the null hypothesis or fail to reject it.
  • Report the Results : Summarize and present the outcomes in your report’s results and discussion sections.

While the specifics of these steps can vary depending on the research context and the data type, the fundamental process of hypothesis testing remains consistent across different studies.

Let’s work through these steps in an example!

Hypothesis Testing Example

Researchers want to determine if a new educational program improves student performance on standardized tests. They randomly assign 30 students to a control group , which follows the standard curriculum, and another 30 students to a treatment group, which participates in the new educational program. After a semester, they compare the test scores of both groups.

Download the CSV data file to perform the hypothesis testing yourself: Hypothesis_Testing .

The researchers write their hypotheses. These statements apply to the population, so they use the mu (μ) symbol for the population mean parameter .

  • Null Hypothesis (H 0 ) : The population means of the test scores for the two groups are equal (μ 1 = μ 2 ).
  • Alternative Hypothesis (H A ) : The population means of the test scores for the two groups are unequal (μ 1 ≠ μ 2 ).

Choosing the correct hypothesis test depends on attributes such as data type and number of groups. Because they’re using continuous data and comparing two means, the researchers use a 2-sample t-test .

Here are the results.

Hypothesis testing results for the example.

The treatment group’s mean is 58.70, compared to the control group’s mean of 48.12. The mean difference is 10.67 points. Use the test’s p-value and significance level to determine whether this difference is likely a product of random fluctuation in the sample or a genuine population effect.

Because the p-value (0.000) is less than the standard significance level of 0.05, the results are statistically significant, and we can reject the null hypothesis. The sample data provides sufficient evidence to conclude that the new program’s effect exists in the population.

Limitations

Hypothesis testing improves your effectiveness in making data-driven decisions. However, it is not 100% accurate because random samples occasionally produce fluky results. Hypothesis tests have two types of errors, both relating to drawing incorrect conclusions.

  • Type I error: The test rejects a true null hypothesis—a false positive.
  • Type II error: The test fails to reject a false null hypothesis—a false negative.

Learn more about Type I and Type II Errors .

Our exploration of hypothesis testing using a practical example of an educational program reveals its powerful ability to guide decisions based on statistical evidence. Whether you’re a student, researcher, or professional, understanding and applying these procedures can open new doors to discovering insights and making informed decisions. Let this tool empower your analytical endeavors as you navigate through the vast seas of data.

Learn more about the Hypothesis Tests for Various Data Types .

Share this:

define hypothesis testing wikipedia

Reader Interactions

' src=

June 10, 2024 at 10:51 am

Thank you, Jim, for another helpful article; timely too since I have started reading your new book on hypothesis testing and, now that we are at the end of the school year, my district is asking me to perform a number of evaluations on instructional programs. This is where my question/concern comes in. You mention that hypothesis testing is all about testing samples. However, I use all the students in my district when I make these comparisons. Since I am using the entire “population” in my evaluations (I don’t select a sample of third grade students, for example, but I use all 700 third graders), am I somehow misusing the tests? Or can I rest assured that my district’s student population is only a sample of the universal population of students?

' src=

June 10, 2024 at 1:50 pm

I hope you are finding the book helpful!

Yes, the purpose of hypothesis testing is to infer the properties of a population while accounting for random sampling error.

In your case, it comes down to how you want to use the results. Who do you want the results to apply to?

If you’re summarizing the sample, looking for trends and patterns, or evaluating those students and don’t plan to apply those results to other students, you don’t need hypothesis testing because there is no sampling error. They are the population and you can just use descriptive statistics. In this case, you’d only need to focus on the practical significance of the effect sizes.

On the other hand, if you want to apply the results from this group to other students, you’ll need hypothesis testing. However, there is the complicating issue of what population your sample of students represent. I’m sure your district has its own unique characteristics, demographics, etc. Your district’s students probably don’t adequately represent a universal population. At the very least, you’d need to recognize any special attributes of your district and how they could bias the results when trying to apply them outside the district. Or they might apply to similar districts in your region.

However, I’d imagine your 3rd graders probably adequately represent future classes of 3rd graders in your district. You need to be alert to changing demographics. At least in the short run I’d imagine they’d be representative of future classes.

Think about how these results will be used. Do they just apply to the students you measured? Then you don’t need hypothesis tests. However, if the results are being used to infer things about other students outside of the sample, you’ll need hypothesis testing along with considering how well your students represent the other students and how they differ.

I hope that helps!

June 10, 2024 at 3:21 pm

Thank you so much, Jim, for the suggestions in terms of what I need to think about and consider! You are always so clear in your explanations!!!!

June 10, 2024 at 3:22 pm

You’re very welcome! Best of luck with your evaluations!

Comments and Questions Cancel reply

What is Hypothesis Testing?

A statistical hypothesis is an assumption about a population parameter. This assumption may or may not be true. Hypothesis testing refers to the formal procedures used by statisticians to accept or reject statistical hypotheses. Statistical Hypotheses Factual Hypotheses  The most ideal approach to decide if a factual theory is genuine is to look at the […]

A statistical hypothesis is an assumption about a population parameter. This assumption may or may not be true. Hypothesis testing refers to the formal procedures used by statisticians to accept or reject statistical hypotheses.

Statistical Hypotheses

Factual Hypotheses 

The most ideal approach to decide if a factual theory is genuine is to look at the whole populace. Since that is regularly unfeasible, specialists normally look at an arbitrary example from the populace. In the event that example information is not steady with the factual speculation, the theory is dismissed. 

There are two sorts of factual speculations. 

Invalid speculation. The invalid theory, signified by Ho, is normally the speculation that example perceptions result absolutely from possibility. 

Elective theory. The elective speculation, indicated by H1 or Ha, is the theory that example perceptions are impacted by some non-arbitrary reason. 

For instance, assume we needed to decide if a coin was reasonable and adjusted. Invalid speculation may be that a large portion of the flips would bring about Heads and half, in Tails. The elective speculation may be that the number of Heads and Tails would be altogether different. Emblematically, these speculations would be communicated as 

Ho: P = 0.5 

Ha: P ≠ 0.5 

Assume we flipped the coin multiple times, bringing about 40 Heads and 10 Tails. Given this outcome, we would be slanted to dismiss the invalid speculation. We would finish up, in view of the proof, that the coin was most likely not reasonable and adjusted.

Can We Accept the Null Hypothesis?

A few scientists state that a speculation test can have one of two results: you acknowledge the invalid theory or you dismiss the invalid speculation. Numerous analysts, be that as it may, disagree with the thought of “tolerating the invalid speculation.” Instead, they state: you dismiss the invalid theory or you neglect to dismiss the invalid speculation. 

Why the qualification among “acknowledgment” and “inability to dismiss?” Acceptance suggests that the invalid theory is valid. The inability to reject suggests that the information is not adequately powerful for us to favor the elective speculation over the invalid theory. 

Hypothesis Tests

Analysts pursue a conventional procedure to decide if to dismiss an invalid theory, in light of test information. This procedure, called speculation testing, comprises of four stages. 

State the hypotheses. This includes expressing the invalid and elective speculations. The speculations are expressed so that they are totally unrelated. That is, in the event that one is valid, the other must be false. 

Detail an investigation plan. The examination plan portrays how to utilize test information to assess invalid speculation. The assessment frequently centers around a solitary test measurement. 

Break down example information. Discover the estimation of the test measurement (mean score, extent, t measurement, z-score, and so on.) depicted in the examination plan. 

Interpret results.  Apply the choice principle portrayed in the investigation plan. On the off chance that the estimation of the test measurement is far-fetched, in view of the invalid theory, dismiss the invalid speculation. 

Decision Errors

Two sorts of blunders can result from a theory test. 

Type I mistake. A Type I mistake happens when the scientist dismisses an invalid theory when it is valid. The likelihood of submitting a Type I mistake is known as the centrality level. This likelihood is likewise called the alpha and is frequently indicated by α. 

Type II mistake. A Type II blunder happens when the analyst neglects to dismiss invalid speculation that is false. The likelihood of submitting a Type II mistake is called Beta and is frequently meant by β. The likelihood of not submitting a Type II blunder is known as the Power of the test.

Decision Rules

The analysis plan includes decision rules for rejecting the null hypothesis. In practice, statisticians describe these decision rules in two ways – with reference to a P-value or with reference to a region of acceptance.

P-value. The strength of evidence in support of a null hypothesis is measured by the P-value. Suppose the test statistic is equal to S. The P-value is the probability of observing a test statistic as extreme as S, assuming the null hypothesis is true. If the P-value is less than the significance level, we reject the null hypothesis.

Region of acceptance. The region of acceptance is a range of values. If the test statistic falls within the region of acceptance, the null hypothesis is not rejected. The region of acceptance is defined so that the chance of making a Type I error is equal to the significance level.

The set of values outside the region of acceptance is called the region of rejection. If the test statistic falls within the region of rejection, the null hypothesis is rejected. In such cases, we say that the hypothesis has been rejected at the α level of significance.

These approaches are equivalent. Some statistics texts use the P-value approach; others use the region of acceptance approach. On this website, we tend to use the region of acceptance approach.

One-Tailed and Two-Tailed Tests 

A trial of a factual theory, where the locale of dismissal is on just one side of the examining dispersion, is known as a one-followed test. For instance, assume the invalid theory expresses that the mean is not exactly or equivalent to 10. The elective speculation would be that the mean is more prominent than 10. The area of dismissal would comprise of a scope of numbers situated on the correct side of inspecting dissemination; that is, a lot of numbers more noteworthy than 10. 

A trial of a measurable speculation, where the locale of dismissal is on the two sides of the inspecting dispersion, is known as a two-followed test. For instance, assume the invalid theory expresses that the mean is equivalent to 10. The elective speculation would be that the mean is under 10 or more noteworthy than 10. The area of dismissal would comprise of a scope of numbers situated on the two sides of inspecting dissemination; that is, the locale of dismissal would comprise mostly of numbers that were under 10 and incompletely of numbers that were more noteworthy than 10

Weekly newsletter

No spam. Just the latest releases and tips, interesting articles, and exclusive interviews in your inbox every week.

You may also like

False negative.

While understanding the hypothesis, two errors can be quite confusing. These two errors are false negative and false positive. You can also refer to the false-negative error as type II error and false-positive as type I error. While you are learning, you might think these errors have no use and will only waste your time […]

Box Plot Review

A box plot or box and whisker plot help you display the database distribution on a five-number summary. The first quartile Q1 will be the minimum, the third quartile Q3 will be the median, and the fifth quartile Q5 will be the maximum. You can find the outliers and their values by using a box […]

define hypothesis testing wikipedia

Bayesian Networks

Creating a probabilistic model can be challenging but proves helpful in machine learning. To create such a graphical model, you need to find the probabilistic relationships between variables. Suppose you are creating a graphical representation of the variables. You need to represent the variables as nodes and conditional independence as the absence of edges. Graphical […]

define hypothesis testing wikipedia

Privacy Overview

Hypothesis Testing

Hypothesis testing is a tool for making statistical inferences about the population data. It is an analysis tool that tests assumptions and determines how likely something is within a given standard of accuracy. Hypothesis testing provides a way to verify whether the results of an experiment are valid.

A null hypothesis and an alternative hypothesis are set up before performing the hypothesis testing. This helps to arrive at a conclusion regarding the sample obtained from the population. In this article, we will learn more about hypothesis testing, its types, steps to perform the testing, and associated examples.

1.
2.
3.
4.
5.
6.
7.
8.

What is Hypothesis Testing in Statistics?

Hypothesis testing uses sample data from the population to draw useful conclusions regarding the population probability distribution . It tests an assumption made about the data using different types of hypothesis testing methodologies. The hypothesis testing results in either rejecting or not rejecting the null hypothesis.

Hypothesis Testing Definition

Hypothesis testing can be defined as a statistical tool that is used to identify if the results of an experiment are meaningful or not. It involves setting up a null hypothesis and an alternative hypothesis. These two hypotheses will always be mutually exclusive. This means that if the null hypothesis is true then the alternative hypothesis is false and vice versa. An example of hypothesis testing is setting up a test to check if a new medicine works on a disease in a more efficient manner.

Null Hypothesis

The null hypothesis is a concise mathematical statement that is used to indicate that there is no difference between two possibilities. In other words, there is no difference between certain characteristics of data. This hypothesis assumes that the outcomes of an experiment are based on chance alone. It is denoted as \(H_{0}\). Hypothesis testing is used to conclude if the null hypothesis can be rejected or not. Suppose an experiment is conducted to check if girls are shorter than boys at the age of 5. The null hypothesis will say that they are the same height.

Alternative Hypothesis

The alternative hypothesis is an alternative to the null hypothesis. It is used to show that the observations of an experiment are due to some real effect. It indicates that there is a statistical significance between two possible outcomes and can be denoted as \(H_{1}\) or \(H_{a}\). For the above-mentioned example, the alternative hypothesis would be that girls are shorter than boys at the age of 5.

Hypothesis Testing P Value

In hypothesis testing, the p value is used to indicate whether the results obtained after conducting a test are statistically significant or not. It also indicates the probability of making an error in rejecting or not rejecting the null hypothesis.This value is always a number between 0 and 1. The p value is compared to an alpha level, \(\alpha\) or significance level. The alpha level can be defined as the acceptable risk of incorrectly rejecting the null hypothesis. The alpha level is usually chosen between 1% to 5%.

Hypothesis Testing Critical region

All sets of values that lead to rejecting the null hypothesis lie in the critical region. Furthermore, the value that separates the critical region from the non-critical region is known as the critical value.

Hypothesis Testing Formula

Depending upon the type of data available and the size, different types of hypothesis testing are used to determine whether the null hypothesis can be rejected or not. The hypothesis testing formula for some important test statistics are given below:

  • z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\). \(\overline{x}\) is the sample mean, \(\mu\) is the population mean, \(\sigma\) is the population standard deviation and n is the size of the sample.
  • t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\). s is the sample standard deviation.
  • \(\chi ^{2} = \sum \frac{(O_{i}-E_{i})^{2}}{E_{i}}\). \(O_{i}\) is the observed value and \(E_{i}\) is the expected value.

We will learn more about these test statistics in the upcoming section.

Types of Hypothesis Testing

Selecting the correct test for performing hypothesis testing can be confusing. These tests are used to determine a test statistic on the basis of which the null hypothesis can either be rejected or not rejected. Some of the important tests used for hypothesis testing are given below.

Hypothesis Testing Z Test

A z test is a way of hypothesis testing that is used for a large sample size (n ≥ 30). It is used to determine whether there is a difference between the population mean and the sample mean when the population standard deviation is known. It can also be used to compare the mean of two samples. It is used to compute the z test statistic. The formulas are given as follows:

  • One sample: z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\).
  • Two samples: z = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\).

Hypothesis Testing t Test

The t test is another method of hypothesis testing that is used for a small sample size (n < 30). It is also used to compare the sample mean and population mean. However, the population standard deviation is not known. Instead, the sample standard deviation is known. The mean of two samples can also be compared using the t test.

  • One sample: t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\).
  • Two samples: t = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}\).

Hypothesis Testing Chi Square

The Chi square test is a hypothesis testing method that is used to check whether the variables in a population are independent or not. It is used when the test statistic is chi-squared distributed.

One Tailed Hypothesis Testing

One tailed hypothesis testing is done when the rejection region is only in one direction. It can also be known as directional hypothesis testing because the effects can be tested in one direction only. This type of testing is further classified into the right tailed test and left tailed test.

Right Tailed Hypothesis Testing

The right tail test is also known as the upper tail test. This test is used to check whether the population parameter is greater than some value. The null and alternative hypotheses for this test are given as follows:

\(H_{0}\): The population parameter is ≤ some value

\(H_{1}\): The population parameter is > some value.

If the test statistic has a greater value than the critical value then the null hypothesis is rejected

Right Tail Hypothesis Testing

Left Tailed Hypothesis Testing

The left tail test is also known as the lower tail test. It is used to check whether the population parameter is less than some value. The hypotheses for this hypothesis testing can be written as follows:

\(H_{0}\): The population parameter is ≥ some value

\(H_{1}\): The population parameter is < some value.

The null hypothesis is rejected if the test statistic has a value lesser than the critical value.

Left Tail Hypothesis Testing

Two Tailed Hypothesis Testing

In this hypothesis testing method, the critical region lies on both sides of the sampling distribution. It is also known as a non - directional hypothesis testing method. The two-tailed test is used when it needs to be determined if the population parameter is assumed to be different than some value. The hypotheses can be set up as follows:

\(H_{0}\): the population parameter = some value

\(H_{1}\): the population parameter ≠ some value

The null hypothesis is rejected if the test statistic has a value that is not equal to the critical value.

Two Tail Hypothesis Testing

Hypothesis Testing Steps

Hypothesis testing can be easily performed in five simple steps. The most important step is to correctly set up the hypotheses and identify the right method for hypothesis testing. The basic steps to perform hypothesis testing are as follows:

  • Step 1: Set up the null hypothesis by correctly identifying whether it is the left-tailed, right-tailed, or two-tailed hypothesis testing.
  • Step 2: Set up the alternative hypothesis.
  • Step 3: Choose the correct significance level, \(\alpha\), and find the critical value.
  • Step 4: Calculate the correct test statistic (z, t or \(\chi\)) and p-value.
  • Step 5: Compare the test statistic with the critical value or compare the p-value with \(\alpha\) to arrive at a conclusion. In other words, decide if the null hypothesis is to be rejected or not.

Hypothesis Testing Example

The best way to solve a problem on hypothesis testing is by applying the 5 steps mentioned in the previous section. Suppose a researcher claims that the mean average weight of men is greater than 100kgs with a standard deviation of 15kgs. 30 men are chosen with an average weight of 112.5 Kgs. Using hypothesis testing, check if there is enough evidence to support the researcher's claim. The confidence interval is given as 95%.

Step 1: This is an example of a right-tailed test. Set up the null hypothesis as \(H_{0}\): \(\mu\) = 100.

Step 2: The alternative hypothesis is given by \(H_{1}\): \(\mu\) > 100.

Step 3: As this is a one-tailed test, \(\alpha\) = 100% - 95% = 5%. This can be used to determine the critical value.

1 - \(\alpha\) = 1 - 0.05 = 0.95

0.95 gives the required area under the curve. Now using a normal distribution table, the area 0.95 is at z = 1.645. A similar process can be followed for a t-test. The only additional requirement is to calculate the degrees of freedom given by n - 1.

Step 4: Calculate the z test statistic. This is because the sample size is 30. Furthermore, the sample and population means are known along with the standard deviation.

z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\).

\(\mu\) = 100, \(\overline{x}\) = 112.5, n = 30, \(\sigma\) = 15

z = \(\frac{112.5-100}{\frac{15}{\sqrt{30}}}\) = 4.56

Step 5: Conclusion. As 4.56 > 1.645 thus, the null hypothesis can be rejected.

Hypothesis Testing and Confidence Intervals

Confidence intervals form an important part of hypothesis testing. This is because the alpha level can be determined from a given confidence interval. Suppose a confidence interval is given as 95%. Subtract the confidence interval from 100%. This gives 100 - 95 = 5% or 0.05. This is the alpha value of a one-tailed hypothesis testing. To obtain the alpha value for a two-tailed hypothesis testing, divide this value by 2. This gives 0.05 / 2 = 0.025.

Related Articles:

  • Probability and Statistics
  • Data Handling

Important Notes on Hypothesis Testing

  • Hypothesis testing is a technique that is used to verify whether the results of an experiment are statistically significant.
  • It involves the setting up of a null hypothesis and an alternate hypothesis.
  • There are three types of tests that can be conducted under hypothesis testing - z test, t test, and chi square test.
  • Hypothesis testing can be classified as right tail, left tail, and two tail tests.

Examples on Hypothesis Testing

  • Example 1: The average weight of a dumbbell in a gym is 90lbs. However, a physical trainer believes that the average weight might be higher. A random sample of 5 dumbbells with an average weight of 110lbs and a standard deviation of 18lbs. Using hypothesis testing check if the physical trainer's claim can be supported for a 95% confidence level. Solution: As the sample size is lesser than 30, the t-test is used. \(H_{0}\): \(\mu\) = 90, \(H_{1}\): \(\mu\) > 90 \(\overline{x}\) = 110, \(\mu\) = 90, n = 5, s = 18. \(\alpha\) = 0.05 Using the t-distribution table, the critical value is 2.132 t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\) t = 2.484 As 2.484 > 2.132, the null hypothesis is rejected. Answer: The average weight of the dumbbells may be greater than 90lbs
  • Example 2: The average score on a test is 80 with a standard deviation of 10. With a new teaching curriculum introduced it is believed that this score will change. On random testing, the score of 38 students, the mean was found to be 88. With a 0.05 significance level, is there any evidence to support this claim? Solution: This is an example of two-tail hypothesis testing. The z test will be used. \(H_{0}\): \(\mu\) = 80, \(H_{1}\): \(\mu\) ≠ 80 \(\overline{x}\) = 88, \(\mu\) = 80, n = 36, \(\sigma\) = 10. \(\alpha\) = 0.05 / 2 = 0.025 The critical value using the normal distribution table is 1.96 z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\) z = \(\frac{88-80}{\frac{10}{\sqrt{36}}}\) = 4.8 As 4.8 > 1.96, the null hypothesis is rejected. Answer: There is a difference in the scores after the new curriculum was introduced.
  • Example 3: The average score of a class is 90. However, a teacher believes that the average score might be lower. The scores of 6 students were randomly measured. The mean was 82 with a standard deviation of 18. With a 0.05 significance level use hypothesis testing to check if this claim is true. Solution: The t test will be used. \(H_{0}\): \(\mu\) = 90, \(H_{1}\): \(\mu\) < 90 \(\overline{x}\) = 110, \(\mu\) = 90, n = 6, s = 18 The critical value from the t table is -2.015 t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\) t = \(\frac{82-90}{\frac{18}{\sqrt{6}}}\) t = -1.088 As -1.088 > -2.015, we fail to reject the null hypothesis. Answer: There is not enough evidence to support the claim.

go to slide go to slide go to slide

define hypothesis testing wikipedia

Book a Free Trial Class

FAQs on Hypothesis Testing

What is hypothesis testing.

Hypothesis testing in statistics is a tool that is used to make inferences about the population data. It is also used to check if the results of an experiment are valid.

What is the z Test in Hypothesis Testing?

The z test in hypothesis testing is used to find the z test statistic for normally distributed data . The z test is used when the standard deviation of the population is known and the sample size is greater than or equal to 30.

What is the t Test in Hypothesis Testing?

The t test in hypothesis testing is used when the data follows a student t distribution . It is used when the sample size is less than 30 and standard deviation of the population is not known.

What is the formula for z test in Hypothesis Testing?

The formula for a one sample z test in hypothesis testing is z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\) and for two samples is z = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\).

What is the p Value in Hypothesis Testing?

The p value helps to determine if the test results are statistically significant or not. In hypothesis testing, the null hypothesis can either be rejected or not rejected based on the comparison between the p value and the alpha level.

What is One Tail Hypothesis Testing?

When the rejection region is only on one side of the distribution curve then it is known as one tail hypothesis testing. The right tail test and the left tail test are two types of directional hypothesis testing.

What is the Alpha Level in Two Tail Hypothesis Testing?

To get the alpha level in a two tail hypothesis testing divide \(\alpha\) by 2. This is done as there are two rejection regions in the curve.

  • Search Search Please fill out this field.

What Is Hypothesis Testing?

  • How It Works

4 Step Process

The bottom line.

  • Fundamental Analysis

Hypothesis Testing: 4 Steps and Example

define hypothesis testing wikipedia

Hypothesis testing, sometimes called significance testing, is an act in statistics whereby an analyst tests an assumption regarding a population parameter. The methodology employed by the analyst depends on the nature of the data used and the reason for the analysis.

Hypothesis testing is used to assess the plausibility of a hypothesis by using sample data. Such data may come from a larger population or a data-generating process. The word "population" will be used for both of these cases in the following descriptions.

Key Takeaways

  • Hypothesis testing is used to assess the plausibility of a hypothesis by using sample data.
  • The test provides evidence concerning the plausibility of the hypothesis, given the data.
  • Statistical analysts test a hypothesis by measuring and examining a random sample of the population being analyzed.
  • The four steps of hypothesis testing include stating the hypotheses, formulating an analysis plan, analyzing the sample data, and analyzing the result.

How Hypothesis Testing Works

In hypothesis testing, an  analyst  tests a statistical sample, intending to provide evidence on the plausibility of the null hypothesis. Statistical analysts measure and examine a random sample of the population being analyzed. All analysts use a random population sample to test two different hypotheses: the null hypothesis and the alternative hypothesis.

The null hypothesis is usually a hypothesis of equality between population parameters; e.g., a null hypothesis may state that the population mean return is equal to zero. The alternative hypothesis is effectively the opposite of a null hypothesis. Thus, they are mutually exclusive , and only one can be true. However, one of the two hypotheses will always be true.

The null hypothesis is a statement about a population parameter, such as the population mean, that is assumed to be true.

  • State the hypotheses.
  • Formulate an analysis plan, which outlines how the data will be evaluated.
  • Carry out the plan and analyze the sample data.
  • Analyze the results and either reject the null hypothesis, or state that the null hypothesis is plausible, given the data.

Example of Hypothesis Testing

If an individual wants to test that a penny has exactly a 50% chance of landing on heads, the null hypothesis would be that 50% is correct, and the alternative hypothesis would be that 50% is not correct. Mathematically, the null hypothesis is represented as Ho: P = 0.5. The alternative hypothesis is shown as "Ha" and is identical to the null hypothesis, except with the equal sign struck-through, meaning that it does not equal 50%.

A random sample of 100 coin flips is taken, and the null hypothesis is tested. If it is found that the 100 coin flips were distributed as 40 heads and 60 tails, the analyst would assume that a penny does not have a 50% chance of landing on heads and would reject the null hypothesis and accept the alternative hypothesis.

If there were 48 heads and 52 tails, then it is plausible that the coin could be fair and still produce such a result. In cases such as this where the null hypothesis is "accepted," the analyst states that the difference between the expected results (50 heads and 50 tails) and the observed results (48 heads and 52 tails) is "explainable by chance alone."

When Did Hypothesis Testing Begin?

Some statisticians attribute the first hypothesis tests to satirical writer John Arbuthnot in 1710, who studied male and female births in England after observing that in nearly every year, male births exceeded female births by a slight proportion. Arbuthnot calculated that the probability of this happening by chance was small, and therefore it was due to “divine providence.”

What are the Benefits of Hypothesis Testing?

Hypothesis testing helps assess the accuracy of new ideas or theories by testing them against data. This allows researchers to determine whether the evidence supports their hypothesis, helping to avoid false claims and conclusions. Hypothesis testing also provides a framework for decision-making based on data rather than personal opinions or biases. By relying on statistical analysis, hypothesis testing helps to reduce the effects of chance and confounding variables, providing a robust framework for making informed conclusions.

What are the Limitations of Hypothesis Testing?

Hypothesis testing relies exclusively on data and doesn’t provide a comprehensive understanding of the subject being studied. Additionally, the accuracy of the results depends on the quality of the available data and the statistical methods used. Inaccurate data or inappropriate hypothesis formulation may lead to incorrect conclusions or failed tests. Hypothesis testing can also lead to errors, such as analysts either accepting or rejecting a null hypothesis when they shouldn’t have. These errors may result in false conclusions or missed opportunities to identify significant patterns or relationships in the data.

Hypothesis testing refers to a statistical process that helps researchers determine the reliability of a study. By using a well-formulated hypothesis and set of statistical tests, individuals or businesses can make inferences about the population that they are studying and draw conclusions based on the data presented. All hypothesis testing methods have the same four-step process, which includes stating the hypotheses, formulating an analysis plan, analyzing the sample data, and analyzing the result.

Sage. " Introduction to Hypothesis Testing ," Page 4.

Elder Research. " Who Invented the Null Hypothesis? "

Formplus. " Hypothesis Testing: Definition, Uses, Limitations and Examples ."

define hypothesis testing wikipedia

  • Terms of Service
  • Editorial Policy
  • Privacy Policy

IMAGES

  1. Hypothesis Testing: 4 Steps and Example

    define hypothesis testing wikipedia

  2. Statistical Hypothesis Testing: Step by Step

    define hypothesis testing wikipedia

  3. PPT

    define hypothesis testing wikipedia

  4. Hypothesis Testing

    define hypothesis testing wikipedia

  5. 5 Steps of Hypothesis Testing with Examples

    define hypothesis testing wikipedia

  6. What is Hypothesis Testing? Types and Methods

    define hypothesis testing wikipedia

VIDEO

  1. Concept of Hypothesis

  2. What Is A Hypothesis?

  3. What is a Hypothesis?

  4. proofs exist only in mathematics

  5. Hypothesis Testing

  6. A Bold Course Correction: Testing a Hypothesis for Product Strategy

COMMENTS

  1. Statistical hypothesis test

    A statistical hypothesis test is a method of statistical inference used to decide whether the data sufficiently supports a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic. Then a decision is made, either by comparing the test statistic to a critical value or equivalently by evaluating a ...

  2. Hypothesis

    The hypothesis of Andreas Cellarius, showing the planetary motions in eccentric and epicyclical orbits. A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon.For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained with ...

  3. 9.1: Introduction to Hypothesis Testing

    In hypothesis testing, the goal is to see if there is sufficient statistical evidence to reject a presumed null hypothesis in favor of a conjectured alternative hypothesis.The null hypothesis is usually denoted \(H_0\) while the alternative hypothesis is usually denoted \(H_1\). An hypothesis test is a statistical decision; the conclusion will either be to reject the null hypothesis in favor ...

  4. Hypothesis Testing

    A hypothesis test is a statistical inference method used to test the significance of a proposed (hypothesized) relation between population statistics (parameters) and their corresponding sample estimators. In other words, hypothesis tests are used to determine if there is enough evidence in a sample to prove a hypothesis true for the entire population. The test considers two hypotheses: the ...

  5. Statistics/Hypothesis Testing

    Let us formally define the terms related to hypothesis testing in the following. Definition. (Hypothesis test) A hypothesis test is a rule that specifies for which observed sample values we (do not reject and) accept as true (and thus reject ), and for which observed sample values we reject and accept . Remark.

  6. Hypothesis Testing

    Present the findings in your results and discussion section. Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps. Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test.

  7. Null hypothesis

    The null hypothesis and the alternative hypothesis are types of conjectures used in statistical tests to make statistical inferences, which are formal methods of reaching conclusions and separating scientific claims from statistical noise.. The statement being tested in a test of statistical significance is called the null hypothesis. The test of significance is designed to assess the strength ...

  8. Introduction to Hypothesis Testing

    A hypothesis test consists of five steps: 1. State the hypotheses. State the null and alternative hypotheses. These two hypotheses need to be mutually exclusive, so if one is true then the other must be false. 2. Determine a significance level to use for the hypothesis. Decide on a significance level.

  9. Hypothesis Testing: Uses, Steps & Example

    The researchers write their hypotheses. These statements apply to the population, so they use the mu (μ) symbol for the population mean parameter.. Null Hypothesis (H 0): The population means of the test scores for the two groups are equal (μ 1 = μ 2).; Alternative Hypothesis (H A): The population means of the test scores for the two groups are unequal (μ 1 ≠ μ 2).

  10. Statistical hypothesis test

    A statistical hypothesis test is a method used in statistics. It helps you describe the results you get from an experiment. The hypothesis test tells you the likelihood that a specific result would happen by chance. Statistical hypothesis tests answer the question: Assuming that the null hypothesis is true, what is the probability of getting a ...

  11. 11.1: Introduction to Hypothesis Testing

    The null hypothesis in a correlational study of the relationship between high school grades and college grades would typically be that the population correlation is 0 0. This can be written as. ρ = 0 (11.1.3) (11.1.3) ρ = 0. where ρ ρ is the population correlation (not to be confused with r r, the correlation in the sample).

  12. What is Hypothesis Testing?

    A statistical hypothesis is an assumption about a population parameter. This assumption may or may not be true. Hypothesis testing refers to the formal procedures used by statisticians to accept or reject statistical hypotheses. Statistical Hypotheses Factual Hypotheses The most ideal approach to decide if a factual theory is genuine is to look at the […]

  13. 9: Hypothesis Testing

    Hypothesis testing refers to the process of choosing between competing hypotheses about a probability distribution, based on observed data from the distribution. It is a core topic in mathematical statistics, and indeed is a fundamental part of the language of statistics. In this chapter, we study the basics of hypothesis testing, and explore ...

  14. A Gentle Introduction to Statistical Hypothesis Testing

    A statistical hypothesis test may return a value called p or the p-value. This is a quantity that we can use to interpret or quantify the result of the test and either reject or fail to reject the null hypothesis. This is done by comparing the p-value to a threshold value chosen beforehand called the significance level.

  15. Understanding Statistical Testing

    Abstract. Statistical hypothesis testing is common in research, but a conventional understanding sometimes leads to mistaken application and misinterpretation. The logic of hypothesis testing presented in this article provides for a clearer understanding, application, and interpretation. Key conclusions are that (a) the magnitude of an estimate ...

  16. Hypothesis

    Today, a hypothesis refers to an idea that needs to be tested. A hypothesis needs more work by the researcher in order to check it. A tested hypothesis that works may become part of a theory —or become a theory itself. The testing should be an attempt to prove that the hypothesis is wrong. That is, there should be a way to falsify the ...

  17. Test statistic

    Test statistic is a quantity derived from the sample for statistical hypothesis testing. [1] A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test. In general, a test statistic is selected or ...

  18. Hypothesis Testing

    Hypothesis testing is a statistical method that is used to make a statistical decision using experimental data. Hypothesis testing is basically an assumption that we make about a population parameter. It evaluates two mutually exclusive statements about a population to determine which statement is best supported by the sample data.

  19. Hypothesis Testing

    Hypothesis testing is a technique that is used to verify whether the results of an experiment are statistically significant. It involves the setting up of a null hypothesis and an alternate hypothesis. There are three types of tests that can be conducted under hypothesis testing - z test, t test, and chi square test.

  20. Hypothesis Testing: 4 Steps and Example

    Hypothesis testing is the process that an analyst uses to test a statistical hypothesis. The methodology depends on the nature of the data used and the reason for the analysis.

  21. Student's t-test

    Student's t-test is a statistical test used to test whether the difference between the response of two groups is statistically significant or not. It is any statistical hypothesis test in which the test statistic follows a Student's t-distribution under the null hypothesis.It is most commonly applied when the test statistic would follow a normal distribution if the value of a scaling term in ...

  22. Khan Academy

    Khanmigo is now free for all US educators! Plan lessons, develop exit tickets, and so much more with our AI teaching assistant. Get it now!

  23. Scientific method

    The scientific method is an empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century. The scientific method involves careful observation coupled with rigorous scepticism, because cognitive assumptions can distort the interpretation of the observation.Scientific inquiry includes creating a hypothesis through inductive reasoning ...

  24. Falsifiability

    Here are two black swans, but even with no black swans to possibly falsify it, "All swans are white" would still be shown falsifiable by "Here is a black swan"—a black swan would still be a state of affairs, only an imaginary one. [A]Falsifiability (or refutability) is a deductive standard of evaluation of scientific theories and hypotheses, introduced by the philosopher of science Karl ...