Ohio State nav bar

The Ohio State University

  • BuckeyeLink
  • Find People
  • Search Ohio State

Research Questions & Hypotheses

Generally, in quantitative studies, reviewers expect hypotheses rather than research questions. However, both research questions and hypotheses serve different purposes and can be beneficial when used together.

Research Questions

Clarify the research’s aim (farrugia et al., 2010).

  • Research often begins with an interest in a topic, but a deep understanding of the subject is crucial to formulate an appropriate research question.
  • Descriptive: “What factors most influence the academic achievement of senior high school students?”
  • Comparative: “What is the performance difference between teaching methods A and B?”
  • Relationship-based: “What is the relationship between self-efficacy and academic achievement?”
  • Increasing knowledge about a subject can be achieved through systematic literature reviews, in-depth interviews with patients (and proxies), focus groups, and consultations with field experts.
  • Some funding bodies, like the Canadian Institute for Health Research, recommend conducting a systematic review or a pilot study before seeking grants for full trials.
  • The presence of multiple research questions in a study can complicate the design, statistical analysis, and feasibility.
  • It’s advisable to focus on a single primary research question for the study.
  • The primary question, clearly stated at the end of a grant proposal’s introduction, usually specifies the study population, intervention, and other relevant factors.
  • The FINER criteria underscore aspects that can enhance the chances of a successful research project, including specifying the population of interest, aligning with scientific and public interest, clinical relevance, and contribution to the field, while complying with ethical and national research standards.
Feasible
Interesting
Novel
Ethical
Relevant
  • The P ICOT approach is crucial in developing the study’s framework and protocol, influencing inclusion and exclusion criteria and identifying patient groups for inclusion.
Population (patients)
Intervention (for intervention studies only)
Comparison group
Outcome of interest
Time
  • Defining the specific population, intervention, comparator, and outcome helps in selecting the right outcome measurement tool.
  • The more precise the population definition and stricter the inclusion and exclusion criteria, the more significant the impact on the interpretation, applicability, and generalizability of the research findings.
  • A restricted study population enhances internal validity but may limit the study’s external validity and generalizability to clinical practice.
  • A broadly defined study population may better reflect clinical practice but could increase bias and reduce internal validity.
  • An inadequately formulated research question can negatively impact study design, potentially leading to ineffective outcomes and affecting publication prospects.

Checklist: Good research questions for social science projects (Panke, 2018)

how many hypothesis should a quantitative research have

Research Hypotheses

Present the researcher’s predictions based on specific statements.

  • These statements define the research problem or issue and indicate the direction of the researcher’s predictions.
  • Formulating the research question and hypothesis from existing data (e.g., a database) can lead to multiple statistical comparisons and potentially spurious findings due to chance.
  • The research or clinical hypothesis, derived from the research question, shapes the study’s key elements: sampling strategy, intervention, comparison, and outcome variables.
  • Hypotheses can express a single outcome or multiple outcomes.
  • After statistical testing, the null hypothesis is either rejected or not rejected based on whether the study’s findings are statistically significant.
  • Hypothesis testing helps determine if observed findings are due to true differences and not chance.
  • Hypotheses can be 1-sided (specific direction of difference) or 2-sided (presence of a difference without specifying direction).
  • 2-sided hypotheses are generally preferred unless there’s a strong justification for a 1-sided hypothesis.
  • A solid research hypothesis, informed by a good research question, influences the research design and paves the way for defining clear research objectives.

Types of Research Hypothesis

  • In a Y-centered research design, the focus is on the dependent variable (DV) which is specified in the research question. Theories are then used to identify independent variables (IV) and explain their causal relationship with the DV.
  • Example: “An increase in teacher-led instructional time (IV) is likely to improve student reading comprehension scores (DV), because extensive guided practice under expert supervision enhances learning retention and skill mastery.”
  • Hypothesis Explanation: The dependent variable (student reading comprehension scores) is the focus, and the hypothesis explores how changes in the independent variable (teacher-led instructional time) affect it.
  • In X-centered research designs, the independent variable is specified in the research question. Theories are used to determine potential dependent variables and the causal mechanisms at play.
  • Example: “Implementing technology-based learning tools (IV) is likely to enhance student engagement in the classroom (DV), because interactive and multimedia content increases student interest and participation.”
  • Hypothesis Explanation: The independent variable (technology-based learning tools) is the focus, with the hypothesis exploring its impact on a potential dependent variable (student engagement).
  • Probabilistic hypotheses suggest that changes in the independent variable are likely to lead to changes in the dependent variable in a predictable manner, but not with absolute certainty.
  • Example: “The more teachers engage in professional development programs (IV), the more their teaching effectiveness (DV) is likely to improve, because continuous training updates pedagogical skills and knowledge.”
  • Hypothesis Explanation: This hypothesis implies a probable relationship between the extent of professional development (IV) and teaching effectiveness (DV).
  • Deterministic hypotheses state that a specific change in the independent variable will lead to a specific change in the dependent variable, implying a more direct and certain relationship.
  • Example: “If the school curriculum changes from traditional lecture-based methods to project-based learning (IV), then student collaboration skills (DV) are expected to improve because project-based learning inherently requires teamwork and peer interaction.”
  • Hypothesis Explanation: This hypothesis presumes a direct and definite outcome (improvement in collaboration skills) resulting from a specific change in the teaching method.
  • Example : “Students who identify as visual learners will score higher on tests that are presented in a visually rich format compared to tests presented in a text-only format.”
  • Explanation : This hypothesis aims to describe the potential difference in test scores between visual learners taking visually rich tests and text-only tests, without implying a direct cause-and-effect relationship.
  • Example : “Teaching method A will improve student performance more than method B.”
  • Explanation : This hypothesis compares the effectiveness of two different teaching methods, suggesting that one will lead to better student performance than the other. It implies a direct comparison but does not necessarily establish a causal mechanism.
  • Example : “Students with higher self-efficacy will show higher levels of academic achievement.”
  • Explanation : This hypothesis predicts a relationship between the variable of self-efficacy and academic achievement. Unlike a causal hypothesis, it does not necessarily suggest that one variable causes changes in the other, but rather that they are related in some way.

Tips for developing research questions and hypotheses for research studies

  • Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.
  • Learn about current trends and technological advances on the topic.
  • Seek careful input from experts, mentors, colleagues, and collaborators to refine your research question as this will aid in developing the research question and guide the research study.
  • Use the FINER criteria in the development of the research question.
  • Ensure that the research question follows PICOT format.
  • Develop a research hypothesis from the research question.
  • Ensure that the research question and objectives are answerable, feasible, and clinically relevant.

If your research hypotheses are derived from your research questions, particularly when multiple hypotheses address a single question, it’s recommended to use both research questions and hypotheses. However, if this isn’t the case, using hypotheses over research questions is advised. It’s important to note these are general guidelines, not strict rules. If you opt not to use hypotheses, consult with your supervisor for the best approach.

Farrugia, P., Petrisor, B. A., Farrokhyar, F., & Bhandari, M. (2010). Practical tips for surgical research: Research questions, hypotheses and objectives.  Canadian journal of surgery. Journal canadien de chirurgie ,  53 (4), 278–281.

Hulley, S. B., Cummings, S. R., Browner, W. S., Grady, D., & Newman, T. B. (2007). Designing clinical research. Philadelphia.

Panke, D. (2018). Research design & method selection: Making good choices in the social sciences.  Research Design & Method Selection , 1-368.

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

how many hypothesis should a quantitative research have

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Educational resources and simple solutions for your research journey

Research hypothesis: What it is, how to write it, types, and examples

What is a Research Hypothesis: How to Write it, Types, and Examples

how many hypothesis should a quantitative research have

Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.  

It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .  

Table of Contents

What is a hypothesis ?  

A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.  

What is a research hypothesis ?  

Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”   

A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.     

how many hypothesis should a quantitative research have

Characteristics of a good hypothesis  

Here are the characteristics of a good hypothesis :  

  • Clearly formulated and free of language errors and ambiguity  
  • Concise and not unnecessarily verbose  
  • Has clearly defined variables  
  • Testable and stated in a way that allows for it to be disproven  
  • Can be tested using a research design that is feasible, ethical, and practical   
  • Specific and relevant to the research problem  
  • Rooted in a thorough literature search  
  • Can generate new knowledge or understanding.  

How to create an effective research hypothesis  

A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.  

Let’s look at each step for creating an effective, testable, and good research hypothesis :  

  • Identify a research problem or question: Start by identifying a specific research problem.   
  • Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.   
  • Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.  
  • State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.   
  • Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.  
  • Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .  

Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.  

How to write a research hypothesis  

When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.  

An example of a research hypothesis in this format is as follows:  

“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”  

Population: athletes  

Independent variable: daily cold water showers  

Dependent variable: endurance  

You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.  

how many hypothesis should a quantitative research have

Research hypothesis checklist  

Following from above, here is a 10-point checklist for a good research hypothesis :  

  • Testable: A research hypothesis should be able to be tested via experimentation or observation.  
  • Specific: A research hypothesis should clearly state the relationship between the variables being studied.  
  • Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.  
  • Falsifiable: A research hypothesis should be able to be disproven through testing.  
  • Clear and concise: A research hypothesis should be stated in a clear and concise manner.  
  • Logical: A research hypothesis should be logical and consistent with current understanding of the subject.  
  • Relevant: A research hypothesis should be relevant to the research question and objectives.  
  • Feasible: A research hypothesis should be feasible to test within the scope of the study.  
  • Reflects the population: A research hypothesis should consider the population or sample being studied.  
  • Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.  

By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.  

Research hypothesis: What it is, how to write it, types, and examples

Types of research hypothesis  

Different types of research hypothesis are used in scientific research:  

1. Null hypothesis:

A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.   

Example: “ The newly identified virus is not zoonotic .”  

2. Alternative hypothesis:

This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.  

Example: “ The newly identified virus is zoonotic .”  

3. Directional hypothesis :

This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.   

Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”   

4. Non-directional hypothesis:

While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.  

Example, “ Cats and dogs differ in the amount of affection they express .”  

5. Simple hypothesis :

A simple hypothesis only predicts the relationship between one independent and another independent variable.  

Example: “ Applying sunscreen every day slows skin aging .”  

6 . Complex hypothesis :

A complex hypothesis states the relationship or difference between two or more independent and dependent variables.   

Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)  

7. Associative hypothesis:  

An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.  

Example: “ There is a positive association between physical activity levels and overall health .”  

8 . Causal hypothesis:

A causal hypothesis proposes a cause-and-effect interaction between variables.  

Example: “ Long-term alcohol use causes liver damage .”  

Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.  

how many hypothesis should a quantitative research have

Research hypothesis examples  

Here are some good research hypothesis examples :  

“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”  

“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”  

“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”  

“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”  

Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.   

Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:  

“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)  

“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)  

“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)  

Importance of testable hypothesis  

If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.  

To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.  

Research hypothesis: What it is, how to write it, types, and examples

Frequently Asked Questions (FAQs) on research hypothesis  

1. What is the difference between research question and research hypothesis ?  

A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.

2. When to reject null hypothesis ?

A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.  

3. How can I be sure my hypothesis is testable?  

A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:  

  • Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.  
  • The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.   
  • You should be able to collect the necessary data within the constraints of your study.  
  • It should be possible for other researchers to replicate your study, using the same methods and variables.   
  • Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.  
  • The hypothesis should be able to be disproven or rejected through the collection of data.  

4. How do I revise my research hypothesis if my data does not support it?  

If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.  

5. I am performing exploratory research. Do I need to formulate a research hypothesis?  

As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.  

6. How is a research hypothesis different from a research question?

A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.

7. Can a research hypothesis change during the research process?

Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.

8. How many hypotheses should be included in a research study?

The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.

9. Can research hypotheses be used in qualitative research?

Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

research funding sources

What are the Best Research Funding Sources

inductive research

Inductive vs. Deductive Research Approach

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is secondary school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout secondary school will have lower rates of unplanned pregnancy than teenagers who did not receive any sex education. Secondary school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative correlation between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 12 August 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

how many hypothesis should a quantitative research have

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved August 13, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

how many hypothesis should a quantitative research have

What Is A Research (Scientific) Hypothesis? A plain-language explainer + examples

By:  Derek Jansen (MBA)  | Reviewed By: Dr Eunice Rautenbach | June 2020

If you’re new to the world of research, or it’s your first time writing a dissertation or thesis, you’re probably noticing that the words “research hypothesis” and “scientific hypothesis” are used quite a bit, and you’re wondering what they mean in a research context .

“Hypothesis” is one of those words that people use loosely, thinking they understand what it means. However, it has a very specific meaning within academic research. So, it’s important to understand the exact meaning before you start hypothesizing. 

Research Hypothesis 101

  • What is a hypothesis ?
  • What is a research hypothesis (scientific hypothesis)?
  • Requirements for a research hypothesis
  • Definition of a research hypothesis
  • The null hypothesis

What is a hypothesis?

Let’s start with the general definition of a hypothesis (not a research hypothesis or scientific hypothesis), according to the Cambridge Dictionary:

Hypothesis: an idea or explanation for something that is based on known facts but has not yet been proved.

In other words, it’s a statement that provides an explanation for why or how something works, based on facts (or some reasonable assumptions), but that has not yet been specifically tested . For example, a hypothesis might look something like this:

Hypothesis: sleep impacts academic performance.

This statement predicts that academic performance will be influenced by the amount and/or quality of sleep a student engages in – sounds reasonable, right? It’s based on reasonable assumptions , underpinned by what we currently know about sleep and health (from the existing literature). So, loosely speaking, we could call it a hypothesis, at least by the dictionary definition.

But that’s not good enough…

Unfortunately, that’s not quite sophisticated enough to describe a research hypothesis (also sometimes called a scientific hypothesis), and it wouldn’t be acceptable in a dissertation, thesis or research paper . In the world of academic research, a statement needs a few more criteria to constitute a true research hypothesis .

What is a research hypothesis?

A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes – specificity , clarity and testability .

Let’s take a look at these more closely.

Need a helping hand?

how many hypothesis should a quantitative research have

Hypothesis Essential #1: Specificity & Clarity

A good research hypothesis needs to be extremely clear and articulate about both what’ s being assessed (who or what variables are involved ) and the expected outcome (for example, a difference between groups, a relationship between variables, etc.).

Let’s stick with our sleepy students example and look at how this statement could be more specific and clear.

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.

As you can see, the statement is very specific as it identifies the variables involved (sleep hours and test grades), the parties involved (two groups of students), as well as the predicted relationship type (a positive relationship). There’s no ambiguity or uncertainty about who or what is involved in the statement, and the expected outcome is clear.

Contrast that to the original hypothesis we looked at – “Sleep impacts academic performance” – and you can see the difference. “Sleep” and “academic performance” are both comparatively vague , and there’s no indication of what the expected relationship direction is (more sleep or less sleep). As you can see, specificity and clarity are key.

A good research hypothesis needs to be very clear about what’s being assessed and very specific about the expected outcome.

Hypothesis Essential #2: Testability (Provability)

A statement must be testable to qualify as a research hypothesis. In other words, there needs to be a way to prove (or disprove) the statement. If it’s not testable, it’s not a hypothesis – simple as that.

For example, consider the hypothesis we mentioned earlier:

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.  

We could test this statement by undertaking a quantitative study involving two groups of students, one that gets 8 or more hours of sleep per night for a fixed period, and one that gets less. We could then compare the standardised test results for both groups to see if there’s a statistically significant difference. 

Again, if you compare this to the original hypothesis we looked at – “Sleep impacts academic performance” – you can see that it would be quite difficult to test that statement, primarily because it isn’t specific enough. How much sleep? By who? What type of academic performance?

So, remember the mantra – if you can’t test it, it’s not a hypothesis 🙂

A good research hypothesis must be testable. In other words, you must able to collect observable data in a scientifically rigorous fashion to test it.

Defining A Research Hypothesis

You’re still with us? Great! Let’s recap and pin down a clear definition of a hypothesis.

A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable.

So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria. If you do, you’ll not only have rock-solid hypotheses but you’ll also ensure a clear focus for your entire research project.

What about the null hypothesis?

You may have also heard the terms null hypothesis , alternative hypothesis, or H-zero thrown around. At a simple level, the null hypothesis is the counter-proposal to the original hypothesis.

For example, if the hypothesis predicts that there is a relationship between two variables (for example, sleep and academic performance), the null hypothesis would predict that there is no relationship between those variables.

At a more technical level, the null hypothesis proposes that no statistical significance exists in a set of given observations and that any differences are due to chance alone.

And there you have it – hypotheses in a nutshell. 

If you have any questions, be sure to leave a comment below and we’ll do our best to help you. If you need hands-on help developing and testing your hypotheses, consider our private coaching service , where we hold your hand through the research journey.

how many hypothesis should a quantitative research have

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

17 Comments

Lynnet Chikwaikwai

Very useful information. I benefit more from getting more information in this regard.

Dr. WuodArek

Very great insight,educative and informative. Please give meet deep critics on many research data of public international Law like human rights, environment, natural resources, law of the sea etc

Afshin

In a book I read a distinction is made between null, research, and alternative hypothesis. As far as I understand, alternative and research hypotheses are the same. Can you please elaborate? Best Afshin

GANDI Benjamin

This is a self explanatory, easy going site. I will recommend this to my friends and colleagues.

Lucile Dossou-Yovo

Very good definition. How can I cite your definition in my thesis? Thank you. Is nul hypothesis compulsory in a research?

Pereria

It’s a counter-proposal to be proven as a rejection

Egya Salihu

Please what is the difference between alternate hypothesis and research hypothesis?

Mulugeta Tefera

It is a very good explanation. However, it limits hypotheses to statistically tasteable ideas. What about for qualitative researches or other researches that involve quantitative data that don’t need statistical tests?

Derek Jansen

In qualitative research, one typically uses propositions, not hypotheses.

Samia

could you please elaborate it more

Patricia Nyawir

I’ve benefited greatly from these notes, thank you.

Hopeson Khondiwa

This is very helpful

Dr. Andarge

well articulated ideas are presented here, thank you for being reliable sources of information

TAUNO

Excellent. Thanks for being clear and sound about the research methodology and hypothesis (quantitative research)

I have only a simple question regarding the null hypothesis. – Is the null hypothesis (Ho) known as the reversible hypothesis of the alternative hypothesis (H1? – How to test it in academic research?

Tesfaye Negesa Urge

this is very important note help me much more

Elton Cleckley

Hi” best wishes to you and your very nice blog” 

Trackbacks/Pingbacks

  • What Is Research Methodology? Simple Definition (With Examples) - Grad Coach - […] Contrasted to this, a quantitative methodology is typically used when the research aims and objectives are confirmatory in nature. For example,…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

How to write a research hypothesis

Last updated

19 January 2023

Reviewed by

Miroslav Damyanov

Start with a broad subject matter that excites you, so your curiosity will motivate your work. Conduct a literature search to determine the range of questions already addressed and spot any holes in the existing research.

Narrow the topics that interest you and determine your research question. Rather than focusing on a hole in the research, you might choose to challenge an existing assumption, a process called problematization. You may also find yourself with a short list of questions or related topics.

Use the FINER method to determine the single problem you'll address with your research. FINER stands for:

I nteresting

You need a feasible research question, meaning that there is a way to address the question. You should find it interesting, but so should a larger audience. Rather than repeating research that others have already conducted, your research hypothesis should test something novel or unique. 

The research must fall into accepted ethical parameters as defined by the government of your country and your university or college if you're an academic. You'll also need to come up with a relevant question since your research should provide a contribution to the existing research area.

This process typically narrows your shortlist down to a single problem you'd like to study and the variable you want to test. You're ready to write your hypothesis statements.

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • Types of research hypotheses

It is important to narrow your topic down to one idea before trying to write your research hypothesis. You'll only test one problem at a time. To do this, you'll write two hypotheses – a null hypothesis (H0) and an alternative hypothesis (Ha).

You'll come across many terms related to developing a research hypothesis or referring to a specific type of hypothesis. Let's take a quick look at these terms.

Null hypothesis

The term null hypothesis refers to a research hypothesis type that assumes no statistically significant relationship exists within a set of observations or data. It represents a claim that assumes that any observed relationship is due to chance. Represented as H0, the null represents the conjecture of the research.

Alternative hypothesis

The alternative hypothesis accompanies the null hypothesis. It states that the situation presented in the null hypothesis is false or untrue, and claims an observed effect in your test. This is typically denoted by Ha or H(n), where “n” stands for the number of alternative hypotheses. You can have more than one alternative hypothesis. 

Simple hypothesis

The term simple hypothesis refers to a hypothesis or theory that predicts the relationship between two variables - the independent (predictor) and the dependent (predicted). 

Complex hypothesis

The term complex hypothesis refers to a model – either quantitative (mathematical) or qualitative . A complex hypothesis states the surmised relationship between two or more potentially related variables.

Directional hypothesis

When creating a statistical hypothesis, the directional hypothesis (the null hypothesis) states an assumption regarding one parameter of a population. Some academics call this the “one-sided” hypothesis. The alternative hypothesis indicates whether the researcher tests for a positive or negative effect by including either the greater than (">") or less than ("<") sign.

Non-directional hypothesis

We refer to the alternative hypothesis in a statistical research question as a non-directional hypothesis. It includes the not equal ("≠") sign to show that the research tests whether or not an effect exists without specifying the effect's direction (positive or negative).

Associative hypothesis

The term associative hypothesis assumes a link between two variables but stops short of stating that one variable impacts the other. Academic statistical literature asserts in this sense that correlation does not imply causation. So, although the hypothesis notes the correlation between two variables – the independent and dependent - it does not predict how the two interact.

Logical hypothesis

Typically used in philosophy rather than science, researchers can't test a logical hypothesis because the technology or data set doesn't yet exist. A logical hypothesis uses logic as the basis of its assumptions. 

In some cases, a logical hypothesis can become an empirical hypothesis once technology provides an opportunity for testing. Until that time, the question remains too expensive or complex to address. Note that a logical hypothesis is not a statistical hypothesis.

Empirical hypothesis

When we consider the opposite of a logical hypothesis, we call this an empirical or working hypothesis. This type of hypothesis considers a scientifically measurable question. A researcher can consider and test an empirical hypothesis through replicable tests, observations, and measurements.

Statistical hypothesis

The term statistical hypothesis refers to a test of a theory that uses representative statistical models to test relationships between variables to draw conclusions regarding a large population. This requires an existing large data set, commonly referred to as big data, or implementing a survey to obtain original statistical information to form a data set for the study. 

Testing this type of hypothesis requires the use of random samples. Note that the null and alternative hypotheses are used in statistical hypothesis testing.

Causal hypothesis

The term causal hypothesis refers to a research hypothesis that tests a cause-and-effect relationship. A causal hypothesis is utilized when conducting experimental or quasi-experimental research.

Descriptive hypothesis

The term descriptive hypothesis refers to a research hypothesis used in non-experimental research, specifying an influence in the relationship between two variables.

  • What makes an effective research hypothesis?

An effective research hypothesis offers a clearly defined, specific statement, using simple wording that contains no assumptions or generalizations, and that you can test. A well-written hypothesis should predict the tested relationship and its outcome. It contains zero ambiguity and offers results you can observe and test. 

The research hypothesis should address a question relevant to a research area. Overall, your research hypothesis needs the following essentials:

Hypothesis Essential #1: Specificity & Clarity

Hypothesis Essential #2: Testability (Provability)

  • How to develop a good research hypothesis

In developing your hypothesis statements, you must pre-plan some of your statistical analysis. Once you decide on your problem to examine, determine three aspects:

the parameter you'll test

the test's direction (left-tailed, right-tailed, or non-directional)

the hypothesized parameter value

Any quantitative research includes a hypothesized parameter value of a mean, a proportion, or the difference between two proportions. Here's how to note each parameter:

Single mean (μ)

Paired means (μd)

Single proportion (p)

Difference between two independent means (μ1−μ2)

Difference between two proportions (p1−p2)

Simple linear regression slope (β)

Correlation (ρ)

Defining these parameters and determining whether you want to test the mean, proportion, or differences helps you determine the statistical tests you'll conduct to analyze your data. When writing your hypothesis, you only need to decide which parameter to test and in what overarching way.

The null research hypothesis must include everyday language, in a single sentence, stating the problem you want to solve. Write it as an if-then statement with defined variables. Write an alternative research hypothesis that states the opposite.

  • What is the correct format for writing a hypothesis?

The following example shows the proper format and textual content of a hypothesis. It follows commonly accepted academic standards.

Null hypothesis (H0): High school students who participate in varsity sports as opposed to those who do not, fail to score higher on leadership tests than students who do not participate.

Alternative hypothesis (H1): High school students who play a varsity sport as opposed to those who do not participate in team athletics will score higher on leadership tests than students who do not participate in athletics.

The research question tests the correlation between varsity sports participation and leadership qualities expressed as a score on leadership tests. It compares the population of athletes to non-athletes.

  • What are the five steps of a hypothesis?

Once you decide on the specific problem or question you want to address, you can write your research hypothesis. Use this five-step system to hone your null hypothesis and generate your alternative hypothesis.

Step 1 : Create your research question. This topic should interest and excite you; answering it provides relevant information to an industry or academic area.

Step 2 : Conduct a literature review to gather essential existing research.

Step 3 : Write a clear, strong, simply worded sentence that explains your test parameter, test direction, and hypothesized parameter.

Step 4 : Read it a few times. Have others read it and ask them what they think it means. Refine your statement accordingly until it becomes understandable to everyone. While not everyone can or will comprehend every research study conducted, any person from the general population should be able to read your hypothesis and alternative hypothesis and understand the essential question you want to answer.

Step 5 : Re-write your null hypothesis until it reads simply and understandably. Write your alternative hypothesis.

What is the Red Queen hypothesis?

Some hypotheses are well-known, such as the Red Queen hypothesis. Choose your wording carefully, since you could become like the famed scientist Dr. Leigh Van Valen. In 1973, Dr. Van Valen proposed the Red Queen hypothesis to describe coevolutionary activity, specifically reciprocal evolutionary effects between species to explain extinction rates in the fossil record. 

Essentially, Van Valen theorized that to survive, each species remains in a constant state of adaptation, evolution, and proliferation, and constantly competes for survival alongside other species doing the same. Only by doing this can a species avoid extinction. Van Valen took the hypothesis title from the Lewis Carroll book, "Through the Looking Glass," which contains a key character named the Red Queen who explains to Alice that for all of her running, she's merely running in place.

  • Getting started with your research

In conclusion, once you write your null hypothesis (H0) and an alternative hypothesis (Ha), you’ve essentially authored the elevator pitch of your research. These two one-sentence statements describe your topic in simple, understandable terms that both professionals and laymen can understand. They provide the starting point of your research project.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 6 February 2023

Last updated: 5 February 2023

Last updated: 16 April 2023

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

Popular searches

  • How to Get Participants For Your Study
  • How to Do Segmentation?
  • Conjoint Preference Share Simulator
  • MaxDiff Analysis
  • Likert Scales
  • Reliability & Validity

Request consultation

Do you need support in running a pricing or product study? We can help you with agile consumer research and conjoint analysis.

Looking for an online survey platform?

Conjointly offers a great survey tool with multiple question types, randomisation blocks, and multilingual support. The Basic tier is always free.

Research Methods Knowledge Base

  • Navigating the Knowledge Base
  • Five Big Words
  • Types of Research Questions
  • Time in Research
  • Types of Relationships
  • Types of Data
  • Unit of Analysis
  • Two Research Fallacies
  • Philosophy of Research
  • Ethics in Research
  • Conceptualizing
  • Evaluation Research
  • Measurement
  • Research Design
  • Table of Contents

Fully-functional online survey tool with various question types, logic, randomisation, and reporting for unlimited number of surveys.

Completely free for academics and students .

An hypothesis is a specific statement of prediction. It describes in concrete (rather than theoretical) terms what you expect will happen in your study. Not all studies have hypotheses. Sometimes a study is designed to be exploratory (see inductive research ). There is no formal hypothesis, and perhaps the purpose of the study is to explore some area more thoroughly in order to develop some specific hypothesis or prediction that can be tested in future research. A single study may have one or many hypotheses.

Actually, whenever I talk about an hypothesis, I am really thinking simultaneously about two hypotheses. Let’s say that you predict that there will be a relationship between two variables in your study. The way we would formally set up the hypothesis test is to formulate two hypothesis statements, one that describes your prediction and one that describes all the other possible outcomes with respect to the hypothesized relationship. Your prediction is that variable A and variable B will be related (you don’t care whether it’s a positive or negative relationship). Then the only other possible outcome would be that variable A and variable B are not related. Usually, we call the hypothesis that you support (your prediction) the alternative hypothesis, and we call the hypothesis that describes the remaining possible outcomes the null hypothesis. Sometimes we use a notation like HA or H1 to represent the alternative hypothesis or your prediction, and HO or H0 to represent the null case. You have to be careful here, though. In some studies, your prediction might very well be that there will be no difference or change. In this case, you are essentially trying to find support for the null hypothesis and you are opposed to the alternative.

If your prediction specifies a direction, and the null therefore is the no difference prediction and the prediction of the opposite direction, we call this a one-tailed hypothesis . For instance, let’s imagine that you are investigating the effects of a new employee training program and that you believe one of the outcomes will be that there will be less employee absenteeism. Your two hypotheses might be stated something like this:

The null hypothesis for this study is:

HO: As a result of the XYZ company employee training program, there will either be no significant difference in employee absenteeism or there will be a significant increase .

which is tested against the alternative hypothesis:

HA: As a result of the XYZ company employee training program, there will be a significant decrease in employee absenteeism.

In the figure on the left, we see this situation illustrated graphically. The alternative hypothesis – your prediction that the program will decrease absenteeism – is shown there. The null must account for the other two possible conditions: no difference, or an increase in absenteeism. The figure shows a hypothetical distribution of absenteeism differences. We can see that the term “one-tailed” refers to the tail of the distribution on the outcome variable.

When your prediction does not specify a direction, we say you have a two-tailed hypothesis . For instance, let’s assume you are studying a new drug treatment for depression. The drug has gone through some initial animal trials, but has not yet been tested on humans. You believe (based on theory and the previous research) that the drug will have an effect, but you are not confident enough to hypothesize a direction and say the drug will reduce depression (after all, you’ve seen more than enough promising drug treatments come along that eventually were shown to have severe side effects that actually worsened symptoms). In this case, you might state the two hypotheses like this:

HO: As a result of 300mg./day of the ABC drug, there will be no significant difference in depression.
HA: As a result of 300mg./day of the ABC drug, there will be a significant difference in depression.

The figure on the right illustrates this two-tailed prediction for this case. Again, notice that the term “two-tailed” refers to the tails of the distribution for your outcome variable.

The important thing to remember about stating hypotheses is that you formulate your prediction (directional or not), and then you formulate a second hypothesis that is mutually exclusive of the first and incorporates all possible alternative outcomes for that case. When your study analysis is completed, the idea is that you will have to choose between the two hypotheses. If your prediction was correct, then you would (usually) reject the null hypothesis and accept the alternative. If your original prediction was not supported in the data, then you will accept the null hypothesis and reject the alternative. The logic of hypothesis testing is based on these two basic principles:

  • the formulation of two mutually exclusive hypothesis statements that, together, exhaust all possible outcomes
  • the testing of these so that one is necessarily accepted and the other rejected

OK, I know it’s a convoluted, awkward and formalistic way to ask research questions. But it encompasses a long tradition in statistics called the hypothetical-deductive model , and sometimes we just have to do things because they’re traditions. And anyway, if all of this hypothesis testing was easy enough so anybody could understand it, how do you think statisticians would stay employed?

Cookie Consent

Conjointly uses essential cookies to make our site work. We also use additional cookies in order to understand the usage of the site, gather audience analytics, and for remarketing purposes.

For more information on Conjointly's use of cookies, please read our Cookie Policy .

Which one are you?

I am new to conjointly, i am already using conjointly.

Research Hypotheses

The research hypothesis is central to all research endeavors, whether qualitative or quantitative, exploratory or explanatory. At its most basic, the research hypothesis states what the researcher expects to find – it is the tentative answer to the research question that guides the entire study. Developing testable research hypotheses takes skill, however, along with careful attention to how the proposed research method treats the development and testing of hypotheses.

Before jumping into writing research hypotheses it is crucial to first consider the general research question posed in a study. This seemingly obvious aspect of research can be deceptively difficult to pin down, as researchers often have an unstated sense of what they want to achieve in a study (and excitement about doing so) that makes it challenging to clearly state a research question. Glenn Firebaugh (2008) identified two key criteria for research questions: questions must be researchable and they must be interesting. Researchable implies that a question can be answered through empirical research (that is, something that science can address) and also limited enough that a study could actually hope to answer the question in a reasonable period of time. The requirement that the research question be interesting implies primarily that the question be important in the context of the ongoing scientific discussion of the topic (that is, interesting to other researchers).  

request a consultation

Discover How We Assist to Edit Your Dissertation Chapters

Aligning theoretical framework, gathering articles, synthesizing gaps, articulating a clear methodology and data plan, and writing about the theoretical and practical implications of your research are part of our comprehensive dissertation editing services.

  • Bring dissertation editing expertise to chapters 1-5 in timely manner.
  • Track all changes, then work with you to bring about scholarly writing.
  • Ongoing support to address committee feedback, reducing revisions.

Hypotheses in Quantitative Studies Research hypotheses in quantitative studies take a familiar form: one independent variable , one dependent variable, and a statement about the expected relationship between them. Generally the independent variable is mentioned first followed by language implying causality (terms such as explains, results in) and then the dependent variable; the ordering of the variables should be consistent across all hypotheses in a study so that the reader is not confused about the proposed causal ordering. When both variables are continuous in nature, language describing a positive or negative association between the variables can be used (for example, as education increases, so does income). For hypotheses with categorical variables, a statement about which category of the independent variable is associated with a certain category of the dependent variable can be made (for example, men are more likely to support Republican candidates than women). Continuous variables can also be spoken about it categorical terms (those with higher education are more likely to have high incomes).

Most researchers prefer to present research hypotheses in a directional format, meaning that some statement is made about the expected relationship based on examination of existing theory, past research, general observation, or even an educated guess. It is also appropriate to use the null hypothesis instead, which states simply that no relationship exists between the variables; recall that the null hypothesis forms the basis of all statistical tests of significance. A compromise position is to present a research hypothesis which states a possible direction for the relationship but softens the causal argument by using language such as “tends to” or “in general.”

Hypotheses in Qualitative Studies Hypotheses in qualitative studies serve a very different purpose than in quantitative studies. Due to the inductive nature of qualitative studies, the generation of hypotheses does not take place at the outset of the study. Instead, hypotheses are only tentatively proposed during an iterative process of data collection and interpretation, and help guide the researcher in asking additional questions and searching for disconfirming evidence.

Qualitative research is guided by central questions and subquestions posed by the researcher at the outset of a qualitative study. These questions usually employ the language of how and what in an effort to allow understanding to emerge from the research, rather than why, which tends to imply that the researcher has already developed a belief about the causal mechanism. In general, a qualitative study will have one or two central questions and a series of five to ten subquestions that further develop the central questions. These questions are often asked directly of the study participants (through in-depth interviews, focus groups, etc.) in recognition of the fact that developing an understanding of a particular phenomenon is a collaborative experience between researchers and participants.

  • Privacy Policy

Research Method

Home » Quantitative Research – Methods, Types and Analysis

Quantitative Research – Methods, Types and Analysis

Table of Contents

What is Quantitative Research

Quantitative Research

Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions . This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected. It often involves the use of surveys, experiments, or other structured data collection methods to gather quantitative data.

Quantitative Research Methods

Quantitative Research Methods

Quantitative Research Methods are as follows:

Descriptive Research Design

Descriptive research design is used to describe the characteristics of a population or phenomenon being studied. This research method is used to answer the questions of what, where, when, and how. Descriptive research designs use a variety of methods such as observation, case studies, and surveys to collect data. The data is then analyzed using statistical tools to identify patterns and relationships.

Correlational Research Design

Correlational research design is used to investigate the relationship between two or more variables. Researchers use correlational research to determine whether a relationship exists between variables and to what extent they are related. This research method involves collecting data from a sample and analyzing it using statistical tools such as correlation coefficients.

Quasi-experimental Research Design

Quasi-experimental research design is used to investigate cause-and-effect relationships between variables. This research method is similar to experimental research design, but it lacks full control over the independent variable. Researchers use quasi-experimental research designs when it is not feasible or ethical to manipulate the independent variable.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This research method involves manipulating the independent variable and observing the effects on the dependent variable. Researchers use experimental research designs to test hypotheses and establish cause-and-effect relationships.

Survey Research

Survey research involves collecting data from a sample of individuals using a standardized questionnaire. This research method is used to gather information on attitudes, beliefs, and behaviors of individuals. Researchers use survey research to collect data quickly and efficiently from a large sample size. Survey research can be conducted through various methods such as online, phone, mail, or in-person interviews.

Quantitative Research Analysis Methods

Here are some commonly used quantitative research analysis methods:

Statistical Analysis

Statistical analysis is the most common quantitative research analysis method. It involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis can be used to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.

Regression Analysis

Regression analysis is a statistical technique used to analyze the relationship between one dependent variable and one or more independent variables. Researchers use regression analysis to identify and quantify the impact of independent variables on the dependent variable.

Factor Analysis

Factor analysis is a statistical technique used to identify underlying factors that explain the correlations among a set of variables. Researchers use factor analysis to reduce a large number of variables to a smaller set of factors that capture the most important information.

Structural Equation Modeling

Structural equation modeling is a statistical technique used to test complex relationships between variables. It involves specifying a model that includes both observed and unobserved variables, and then using statistical methods to test the fit of the model to the data.

Time Series Analysis

Time series analysis is a statistical technique used to analyze data that is collected over time. It involves identifying patterns and trends in the data, as well as any seasonal or cyclical variations.

Multilevel Modeling

Multilevel modeling is a statistical technique used to analyze data that is nested within multiple levels. For example, researchers might use multilevel modeling to analyze data that is collected from individuals who are nested within groups, such as students nested within schools.

Applications of Quantitative Research

Quantitative research has many applications across a wide range of fields. Here are some common examples:

  • Market Research : Quantitative research is used extensively in market research to understand consumer behavior, preferences, and trends. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform marketing strategies, product development, and pricing decisions.
  • Health Research: Quantitative research is used in health research to study the effectiveness of medical treatments, identify risk factors for diseases, and track health outcomes over time. Researchers use statistical methods to analyze data from clinical trials, surveys, and other sources to inform medical practice and policy.
  • Social Science Research: Quantitative research is used in social science research to study human behavior, attitudes, and social structures. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform social policies, educational programs, and community interventions.
  • Education Research: Quantitative research is used in education research to study the effectiveness of teaching methods, assess student learning outcomes, and identify factors that influence student success. Researchers use experimental and quasi-experimental designs, as well as surveys and other quantitative methods, to collect and analyze data.
  • Environmental Research: Quantitative research is used in environmental research to study the impact of human activities on the environment, assess the effectiveness of conservation strategies, and identify ways to reduce environmental risks. Researchers use statistical methods to analyze data from field studies, experiments, and other sources.

Characteristics of Quantitative Research

Here are some key characteristics of quantitative research:

  • Numerical data : Quantitative research involves collecting numerical data through standardized methods such as surveys, experiments, and observational studies. This data is analyzed using statistical methods to identify patterns and relationships.
  • Large sample size: Quantitative research often involves collecting data from a large sample of individuals or groups in order to increase the reliability and generalizability of the findings.
  • Objective approach: Quantitative research aims to be objective and impartial in its approach, focusing on the collection and analysis of data rather than personal beliefs, opinions, or experiences.
  • Control over variables: Quantitative research often involves manipulating variables to test hypotheses and establish cause-and-effect relationships. Researchers aim to control for extraneous variables that may impact the results.
  • Replicable : Quantitative research aims to be replicable, meaning that other researchers should be able to conduct similar studies and obtain similar results using the same methods.
  • Statistical analysis: Quantitative research involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis allows researchers to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.
  • Generalizability: Quantitative research aims to produce findings that can be generalized to larger populations beyond the specific sample studied. This is achieved through the use of random sampling methods and statistical inference.

Examples of Quantitative Research

Here are some examples of quantitative research in different fields:

  • Market Research: A company conducts a survey of 1000 consumers to determine their brand awareness and preferences. The data is analyzed using statistical methods to identify trends and patterns that can inform marketing strategies.
  • Health Research : A researcher conducts a randomized controlled trial to test the effectiveness of a new drug for treating a particular medical condition. The study involves collecting data from a large sample of patients and analyzing the results using statistical methods.
  • Social Science Research : A sociologist conducts a survey of 500 people to study attitudes toward immigration in a particular country. The data is analyzed using statistical methods to identify factors that influence these attitudes.
  • Education Research: A researcher conducts an experiment to compare the effectiveness of two different teaching methods for improving student learning outcomes. The study involves randomly assigning students to different groups and collecting data on their performance on standardized tests.
  • Environmental Research : A team of researchers conduct a study to investigate the impact of climate change on the distribution and abundance of a particular species of plant or animal. The study involves collecting data on environmental factors and population sizes over time and analyzing the results using statistical methods.
  • Psychology : A researcher conducts a survey of 500 college students to investigate the relationship between social media use and mental health. The data is analyzed using statistical methods to identify correlations and potential causal relationships.
  • Political Science: A team of researchers conducts a study to investigate voter behavior during an election. They use survey methods to collect data on voting patterns, demographics, and political attitudes, and analyze the results using statistical methods.

How to Conduct Quantitative Research

Here is a general overview of how to conduct quantitative research:

  • Develop a research question: The first step in conducting quantitative research is to develop a clear and specific research question. This question should be based on a gap in existing knowledge, and should be answerable using quantitative methods.
  • Develop a research design: Once you have a research question, you will need to develop a research design. This involves deciding on the appropriate methods to collect data, such as surveys, experiments, or observational studies. You will also need to determine the appropriate sample size, data collection instruments, and data analysis techniques.
  • Collect data: The next step is to collect data. This may involve administering surveys or questionnaires, conducting experiments, or gathering data from existing sources. It is important to use standardized methods to ensure that the data is reliable and valid.
  • Analyze data : Once the data has been collected, it is time to analyze it. This involves using statistical methods to identify patterns, trends, and relationships between variables. Common statistical techniques include correlation analysis, regression analysis, and hypothesis testing.
  • Interpret results: After analyzing the data, you will need to interpret the results. This involves identifying the key findings, determining their significance, and drawing conclusions based on the data.
  • Communicate findings: Finally, you will need to communicate your findings. This may involve writing a research report, presenting at a conference, or publishing in a peer-reviewed journal. It is important to clearly communicate the research question, methods, results, and conclusions to ensure that others can understand and replicate your research.

When to use Quantitative Research

Here are some situations when quantitative research can be appropriate:

  • To test a hypothesis: Quantitative research is often used to test a hypothesis or a theory. It involves collecting numerical data and using statistical analysis to determine if the data supports or refutes the hypothesis.
  • To generalize findings: If you want to generalize the findings of your study to a larger population, quantitative research can be useful. This is because it allows you to collect numerical data from a representative sample of the population and use statistical analysis to make inferences about the population as a whole.
  • To measure relationships between variables: If you want to measure the relationship between two or more variables, such as the relationship between age and income, or between education level and job satisfaction, quantitative research can be useful. It allows you to collect numerical data on both variables and use statistical analysis to determine the strength and direction of the relationship.
  • To identify patterns or trends: Quantitative research can be useful for identifying patterns or trends in data. For example, you can use quantitative research to identify trends in consumer behavior or to identify patterns in stock market data.
  • To quantify attitudes or opinions : If you want to measure attitudes or opinions on a particular topic, quantitative research can be useful. It allows you to collect numerical data using surveys or questionnaires and analyze the data using statistical methods to determine the prevalence of certain attitudes or opinions.

Purpose of Quantitative Research

The purpose of quantitative research is to systematically investigate and measure the relationships between variables or phenomena using numerical data and statistical analysis. The main objectives of quantitative research include:

  • Description : To provide a detailed and accurate description of a particular phenomenon or population.
  • Explanation : To explain the reasons for the occurrence of a particular phenomenon, such as identifying the factors that influence a behavior or attitude.
  • Prediction : To predict future trends or behaviors based on past patterns and relationships between variables.
  • Control : To identify the best strategies for controlling or influencing a particular outcome or behavior.

Quantitative research is used in many different fields, including social sciences, business, engineering, and health sciences. It can be used to investigate a wide range of phenomena, from human behavior and attitudes to physical and biological processes. The purpose of quantitative research is to provide reliable and valid data that can be used to inform decision-making and improve understanding of the world around us.

Advantages of Quantitative Research

There are several advantages of quantitative research, including:

  • Objectivity : Quantitative research is based on objective data and statistical analysis, which reduces the potential for bias or subjectivity in the research process.
  • Reproducibility : Because quantitative research involves standardized methods and measurements, it is more likely to be reproducible and reliable.
  • Generalizability : Quantitative research allows for generalizations to be made about a population based on a representative sample, which can inform decision-making and policy development.
  • Precision : Quantitative research allows for precise measurement and analysis of data, which can provide a more accurate understanding of phenomena and relationships between variables.
  • Efficiency : Quantitative research can be conducted relatively quickly and efficiently, especially when compared to qualitative research, which may involve lengthy data collection and analysis.
  • Large sample sizes : Quantitative research can accommodate large sample sizes, which can increase the representativeness and generalizability of the results.

Limitations of Quantitative Research

There are several limitations of quantitative research, including:

  • Limited understanding of context: Quantitative research typically focuses on numerical data and statistical analysis, which may not provide a comprehensive understanding of the context or underlying factors that influence a phenomenon.
  • Simplification of complex phenomena: Quantitative research often involves simplifying complex phenomena into measurable variables, which may not capture the full complexity of the phenomenon being studied.
  • Potential for researcher bias: Although quantitative research aims to be objective, there is still the potential for researcher bias in areas such as sampling, data collection, and data analysis.
  • Limited ability to explore new ideas: Quantitative research is often based on pre-determined research questions and hypotheses, which may limit the ability to explore new ideas or unexpected findings.
  • Limited ability to capture subjective experiences : Quantitative research is typically focused on objective data and may not capture the subjective experiences of individuals or groups being studied.
  • Ethical concerns : Quantitative research may raise ethical concerns, such as invasion of privacy or the potential for harm to participants.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Focus Groups in Qualitative Research

Focus Groups – Steps, Examples and Guide

Triangulation

Triangulation in Research – Types, Methods and...

Case Study Research

Case Study – Methods, Examples and Guide

Qualitative Research

Qualitative Research – Methods, Analysis Types...

One-to-One Interview in Research

One-to-One Interview – Methods and Guide

Phenomenology

Phenomenology – Methods, Examples and Guide

Duquesne University Logo

Quantitative Research Methods

  • Introduction
  • Descriptive and Inferential Statistics
  • Hypothesis Testing
  • Regression and Correlation
  • Time Series
  • Meta-Analysis
  • Mixed Methods
  • Additional Resources
  • Get Research Help

Hypothesis Tests

A hypothesis test is exactly what it sounds like: You make a hypothesis about the parameters of a population, and the test determines whether your hypothesis is consistent with your sample data.

  • Hypothesis Testing Penn State University tutorial
  • Hypothesis Testing Wolfram MathWorld overview
  • Hypothesis Testing Minitab Blog entry
  • List of Statistical Tests A list of commonly used hypothesis tests and the circumstances under which they're used.

The p-value of a hypothesis test is the probability that your sample data would have occurred if you hypothesis were not correct. Traditionally, researchers have used a p-value of 0.05 (a 5% probability that your sample data would have occurred if your hypothesis was wrong) as the threshold for declaring that a hypothesis is true. But there is a long history of debate and controversy over p-values and significance levels.

Nonparametric Tests

Many of the most commonly used hypothesis tests rely on assumptions about your sample data—for instance, that it is continuous, and that its parameters follow a Normal distribution. Nonparametric hypothesis tests don't make any assumptions about the distribution of the data, and many can be used on categorical data.

  • Nonparametric Tests at Boston University A lesson covering four common nonparametric tests.
  • Nonparametric Tests at Penn State Tutorial covering the theory behind nonparametric tests as well as several commonly used tests.
  • << Previous: Descriptive and Inferential Statistics
  • Next: Regression and Correlation >>
  • Last Updated: Aug 16, 2024 1:12 PM
  • URL: https://guides.library.duq.edu/quant-methods
  • Cookies & Privacy
  • GETTING STARTED
  • Introduction
  • FUNDAMENTALS
  • Acknowledgements
  • Research questions & hypotheses
  • Concepts, constructs & variables
  • Research limitations
  • Getting started
  • Sampling Strategy
  • Research Quality
  • Research Ethics
  • Data Analysis

Quantitative research questions:

What do i have to think about.

If your dissertation is attempting to answer one or more quantitative research questions, there are a number of factors you need to think about before getting started. These factors include: (a) the types of quantitative research questions you are trying to answer; (b) the variables you want to measure, manipulate and/or control; (c) how you should structure your research questions; and (d) whether you should use research questions as opposed to research hypotheses. Understanding these factors is important before reading some of the other articles on quantitative research questions on this website, which go into each factor in more detail.

This article addresses the following questions, which are an important starting point to understand what is required when creating quantitative research questions:

What type of quantitative research question are you trying to answer?

Understanding the types of quantitative research question (i.e., descriptive , comparative and/or relationship ) you want to answer is your first task when using a quantitative research design . This section of the article briefly discusses the difference between these three types of quantitative research question.

What variables are you trying to measure, manipulate and/or control?

Having established the quantitative research questions you want to answer, it is important to identify the variables that you intend to measure , manipulate and/or control . This section of the article briefly discusses the different types of variables (i.e., independent and dependent ; categorical or continuous variables) you may choose to examine.

How should you structure your quantitative research question?

Having identified the variables to include in your research, you will need to structure your research questions in a way that the reader can clearly understand what you are trying to achieve. How you structure these research questions will depend on the type of research questions you have and the variables you are examining. This section of the article briefly discusses the main things to think about when structuring your research questions.

Should you use quantitative research questions or research hypotheses?

Quantitative research questions and research hypotheses are designed to accomplish different tasks. Sometimes dissertations should include both although this is not always the case. This section of the article briefly discusses the difference between quantitative research questions and research hypotheses and when to use both (as opposed to just one or the other).

Each of these questions is addressed in more detail in the sections that follow. If you are interested in a particular section, click on the links below:

Dissertations that are based on a quantitative research design attempt to answer at least one quantitative research question . However, there is more than one type of quantitative research question that you can attempt to answer [see the article, Types of quantitative research question , for a more comprehensive look at these types of quantitative research question].

Quantitative research questions are based on one of three basic approaches to examining the variables you are interested in. These three basic approaches involve either describing , comparing or relating .

Let's imagine we are interested in examining Facebook usage amongst university students in the United States .

We could describe factors relating to the make-up of these Facebook users, quantifying how many (or what proportion) of these university students were male or female, or what their average age was. We could describe factors relating to their behaviour, such as how frequently they used Facebook each week or the reasons why they joined Facebook in the first place (e.g., to connect with friends, to store all their photos in one place, etc.). Potential descriptive quantitative research questions would be:

How often do students use Facebook?

What are the reasons that encourage students to join Facebook?

We could compare some of these factors (i.e., those factors that we had just described). For example, we could compare how frequently the students used Facebook each week, looking for differences between male and female students.

We could relate one or more of these factors (e.g., age) to other factors we had examined (e.g., how frequently students used Facebook each week) to find out if there were any associations or relationships between them. For example, we could relate age to how frequently the students used Facebook each week. This could help us discover if there was an association or relationship between these variables (i.e., age and weekly Facebook usage), and if so, tell us something about this association or relationship (e.g., its strength, direction, and/or statistical significance).

These three approaches to examining the variables you are interested in (i.e., describing , comparing and relating ) are addressed by setting descriptive , comparative or relationship-based research questions . Understanding the difference between these three types of quantitative research question is important for a number of reasons. For example:

The way that you structure your research questions; that is, the way that you write out your research questions will vary depending on the type of research question you are trying to answer [see the article: How to structure quantitative research questions ].

The type of research questions you are trying to answer influences the type of quantitative research design you use.

To learn more about these three types of quantitative research question (i.e., descriptive, comparative and relationship-based research questions) in more detail, see the article: Types of quantitative research question .

Having established the quantitative research questions you want to answer, it is important to identify the variables that you intend to measure , manipulate and/or control . This is a critical component of experimental , quasi-experimental and relationship-based research designs [see the section on Quantitative research designs to learn more]:

In order to identify the variables that you intend to measure, manipulate and/or control, you also need to be able to recognise the different types of variables (i.e., independent and dependent ; categorical or continuous variables) you intend to study. Whilst we describe these types of variables in detail in the article, Types of variables , you need to be aware of the differences between independent and dependent variables, and categorical and continuous variables.

Categorical and continuous variables

There are two groups of variables that you need to know about: categorical variables and continuous variables . We use the word groups of variables because both categorical and continuous variables include additional types of variables. Categorical variables , also known as qualitative (or discrete ) variables , can be further classified a being nominal , dichotomous or ordinal . On the other hand, continuous variables , also known as quantitative variables , can be further classified a being either interval or ratio . For example, the variable gender (male or female) in the Facebook example is a dichotomous variable . When performing quantitative analysis on the data you collect during the dissertation process, you need to understand what type of categorical or continuous variables you are measuring.

Independent and dependent variables

A variable is not only something that we measure , but also something that we can manipulate and something we can control for. For this reason, we distinguish between independent and dependent variables . An independent variable , sometimes called an experimental or predictor variable , is a variable that is being manipulated in an experiment in order to observe the effect on a dependent variable , sometimes called an outcome variable . Understanding which of the variables you are studying are the independent , dependent and control variables is necessary in order to know how to structure and write up your research questions.

At this stage, you should now know:

What types of quantitative research question (i.e., descriptive, comparative or relationship-based research questions) you are trying to answer.

What variables you are interested in and which variables you are trying to measure, manipulate and/or control.

Armed with this knowledge, you now need to think about how to structure your quantitative research questions; that is, how you can write out your research questions in a way that the reader can clearly understand what you are trying to achieve.

There is no "one best way" to structure a quantitative research question. However, we recommend an approach that is based on three steps :

Choose the type of quantitative research question you are trying to create

The type of quantitative research question that you use in your dissertation (i.e., descriptive, comparative and/or relationship) needs to be reflected in the way that you write out the research question; that is, the word choice and phrasing that you use when constructing a research question tells the reader whether it is a descriptive, comparative or relationship-based research question. Therefore, in order to know how to structure your quantitative research question, you need to start by selecting the type of quantitative research question you are trying to create: descriptive, comparative and/or relationship.

Set out the first words that start the research question

Quantitative research questions tend to start with words like "What are" , "How do" , "Does" , "How often" , amongst others. Which words you start with will depend on the type of quantitative research question you are trying to create (i.e., descriptive, comparative and/or relationship) and the goal of the question.

Determine the correct order for the variables you are investigating

The type of quantitative research question you are trying to create (i.e., descriptive, comparative and/or relationship) and the choice of variables you are trying to measure, manipulate and/or control (i.e., independent, dependent and/or control variables) influence how you structure the research question. As a general rule, we suggest that independent variables are set out first, followed by dependent variables, and then control variables (if there are any).

In the section, How to structure quantitative research questions , we discuss these three steps in more detail, providing examples along the way.

Quantitative research questions and research hypotheses are designed to accomplish different tasks:

Research questions

Explain the purpose of the research. In other words, what issue or problem is the research trying answer? In terms of quantitative research questions, the type of research question (i.e., descriptive, comparative and/or relationship) helps to explain the purpose of the research.

Research hypotheses

Explain the predictions being made (or otherwise) by the researcher based on specific hypothesis statements . These hypothesis statements set out what problem or issue the research is trying to answer, as well as their directionality, which help to explain the predictions being made (or otherwise) by the researcher.

Sometimes dissertations should include both research questions and research hypotheses although this is not always the case:

If you feel like the research questions are no more than a repetition of the research hypotheses, it is often better to include only one or the other (i.e., only research hypotheses or only research questions). As a general rule, we would suggest using hypotheses rather than research questions in these cases.

If the research hypotheses build on the research questions, especially if there are multiple research hypotheses used to address a single research question, we would recommend using research questions and research hypotheses.

If you choose to use research hypotheses, whether instead of research questions or in addition to them, these should be written differently to research questions. However, if you are using quantitative research questions, we have articles that can help you learn about the different types of quantitative research questions and how to structure quantitative research questions .

9 Best Marketing Research Methods to Know Your Buyer Better [+ Examples]

Ramona Sukhraj

Published: August 08, 2024

One of the most underrated skills you can have as a marketer is marketing research — which is great news for this unapologetic cyber sleuth.

marketer using marketer research methods to better understand her buyer personas

From brand design and product development to buyer personas and competitive analysis, I’ve researched a number of initiatives in my decade-long marketing career.

And let me tell you: having the right marketing research methods in your toolbox is a must.

Market research is the secret to crafting a strategy that will truly help you accomplish your goals. The good news is there is no shortage of options.

How to Choose a Marketing Research Method

Thanks to the Internet, we have more marketing research (or market research) methods at our fingertips than ever, but they’re not all created equal. Let’s quickly go over how to choose the right one.

how many hypothesis should a quantitative research have

Free Market Research Kit

5 Research and Planning Templates + a Free Guide on How to Use Them in Your Market Research

  • SWOT Analysis Template
  • Survey Template
  • Focus Group Template

Download Free

All fields are required.

You're all set!

Click this link to access this resource at any time.

1. Identify your objective.

What are you researching? Do you need to understand your audience better? How about your competition? Or maybe you want to know more about your customer’s feelings about a specific product.

Before starting your research, take some time to identify precisely what you’re looking for. This could be a goal you want to reach, a problem you need to solve, or a question you need to answer.

For example, an objective may be as foundational as understanding your ideal customer better to create new buyer personas for your marketing agency (pause for flashbacks to my former life).

Or if you’re an organic sode company, it could be trying to learn what flavors people are craving.

2. Determine what type of data and research you need.

Next, determine what data type will best answer the problems or questions you identified. There are primarily two types: qualitative and quantitative. (Sound familiar, right?)

  • Qualitative Data is non-numerical information, like subjective characteristics, opinions, and feelings. It’s pretty open to interpretation and descriptive, but it’s also harder to measure. This type of data can be collected through interviews, observations, and open-ended questions.
  • Quantitative Data , on the other hand, is numerical information, such as quantities, sizes, amounts, or percentages. It’s measurable and usually pretty hard to argue with, coming from a reputable source. It can be derived through surveys, experiments, or statistical analysis.

Understanding the differences between qualitative and quantitative data will help you pinpoint which research methods will yield the desired results.

For instance, thinking of our earlier examples, qualitative data would usually be best suited for buyer personas, while quantitative data is more useful for the soda flavors.

However, truth be told, the two really work together.

Qualitative conclusions are usually drawn from quantitative, numerical data. So, you’ll likely need both to get the complete picture of your subject.

For example, if your quantitative data says 70% of people are Team Black and only 30% are Team Green — Shout out to my fellow House of the Dragon fans — your qualitative data will say people support Black more than Green.

(As they should.)

Primary Research vs Secondary Research

You’ll also want to understand the difference between primary and secondary research.

Primary research involves collecting new, original data directly from the source (say, your target market). In other words, it’s information gathered first-hand that wasn’t found elsewhere.

Some examples include conducting experiments, surveys, interviews, observations, or focus groups.

Meanwhile, secondary research is the analysis and interpretation of existing data collected from others. Think of this like what we used to do for school projects: We would read a book, scour the internet, or pull insights from others to work from.

So, which is better?

Personally, I say any research is good research, but if you have the time and resources, primary research is hard to top. With it, you don’t have to worry about your source's credibility or how relevant it is to your specific objective.

You are in full control and best equipped to get the reliable information you need.

3. Put it all together.

Once you know your objective and what kind of data you want, you’re ready to select your marketing research method.

For instance, let’s say you’re a restaurant trying to see how attendees felt about the Speed Dating event you hosted last week.

You shouldn’t run a field experiment or download a third-party report on speed dating events; those would be useless to you. You need to conduct a survey that allows you to ask pointed questions about the event.

This would yield both qualitative and quantitative data you can use to improve and bring together more love birds next time around.

Best Market Research Methods for 2024

Now that you know what you’re looking for in a marketing research method, let’s dive into the best options.

Note: According to HubSpot’s 2024 State of Marketing report, understanding customers and their needs is one of the biggest challenges facing marketers today. The options we discuss are great consumer research methodologies , but they can also be used for other areas.

Primary Research

1. interviews.

Interviews are a form of primary research where you ask people specific questions about a topic or theme. They typically deliver qualitative information.

I’ve conducted many interviews for marketing purposes, but I’ve also done many for journalistic purposes, like this profile on comedian Zarna Garg . There’s no better way to gather candid, open-ended insights in my book, but that doesn’t mean they’re a cure-all.

What I like: Real-time conversations allow you to ask different questions if you’re not getting the information you need. They also push interviewees to respond quickly, which can result in more authentic answers.

What I dislike: They can be time-consuming and harder to measure (read: get quantitative data) unless you ask pointed yes or no questions.

Best for: Creating buyer personas or getting feedback on customer experience, a product, or content.

2. Focus Groups

Focus groups are similar to conducting interviews but on a larger scale.

In marketing and business, this typically means getting a small group together in a room (or Zoom), asking them questions about various topics you are researching. You record and/or observe their responses to then take action.

They are ideal for collecting long-form, open-ended feedback, and subjective opinions.

One well-known focus group you may remember was run by Domino’s Pizza in 2009 .

After poor ratings and dropping over $100 million in revenue, the brand conducted focus groups with real customers to learn where they could have done better.

It was met with comments like “worst excuse for pizza I’ve ever had” and “the crust tastes like cardboard.” But rather than running from the tough love, it took the hit and completely overhauled its recipes.

The team admitted their missteps and returned to the market with better food and a campaign detailing their “Pizza Turn Around.”

The result? The brand won a ton of praise for its willingness to take feedback, efforts to do right by its consumers, and clever campaign. But, most importantly, revenue for Domino’s rose by 14.3% over the previous year.

The brand continues to conduct focus groups and share real footage from them in its promotion:

What I like: Similar to interviewing, you can dig deeper and pivot as needed due to the real-time nature. They’re personal and detailed.

What I dislike: Once again, they can be time-consuming and make it difficult to get quantitative data. There is also a chance some participants may overshadow others.

Best for: Product research or development

Pro tip: Need help planning your focus group? Our free Market Research Kit includes a handy template to start organizing your thoughts in addition to a SWOT Analysis Template, Survey Template, Focus Group Template, Presentation Template, Five Forces Industry Analysis Template, and an instructional guide for all of them. Download yours here now.

3. Surveys or Polls

Surveys are a form of primary research where individuals are asked a collection of questions. It can take many different forms.

They could be in person, over the phone or video call, by email, via an online form, or even on social media. Questions can be also open-ended or closed to deliver qualitative or quantitative information.

A great example of a close-ended survey is HubSpot’s annual State of Marketing .

In the State of Marketing, HubSpot asks marketing professionals from around the world a series of multiple-choice questions to gather data on the state of the marketing industry and to identify trends.

The survey covers various topics related to marketing strategies, tactics, tools, and challenges that marketers face. It aims to provide benchmarks to help you make informed decisions about your marketing.

It also helps us understand where our customers’ heads are so we can better evolve our products to meet their needs.

Apple is no stranger to surveys, either.

In 2011, the tech giant launched Apple Customer Pulse , which it described as “an online community of Apple product users who provide input on a variety of subjects and issues concerning Apple.”

Screenshot of Apple’s Consumer Pulse Website from 2011.

"For example, we did a large voluntary survey of email subscribers and top readers a few years back."

While these readers gave us a long list of topics, formats, or content types they wanted to see, they sometimes engaged more with content types they didn’t select or favor as much on the surveys when we ran follow-up ‘in the wild’ tests, like A/B testing.”  

Pepsi saw similar results when it ran its iconic field experiment, “The Pepsi Challenge” for the first time in 1975.

The beverage brand set up tables at malls, beaches, and other public locations and ran a blindfolded taste test. Shoppers were given two cups of soda, one containing Pepsi, the other Coca-Cola (Pepsi’s biggest competitor). They were then asked to taste both and report which they preferred.

People overwhelmingly preferred Pepsi, and the brand has repeated the experiment multiple times over the years to the same results.

What I like: It yields qualitative and quantitative data and can make for engaging marketing content, especially in the digital age.

What I dislike: It can be very time-consuming. And, if you’re not careful, there is a high risk for scientific error.

Best for: Product testing and competitive analysis

Pro tip:  " Don’t make critical business decisions off of just one data set," advises Pamela Bump. "Use the survey, competitive intelligence, external data, or even a focus group to give you one layer of ideas or a short-list for improvements or solutions to test. Then gather your own fresh data to test in an experiment or trial and better refine your data-backed strategy."

Secondary Research

8. public domain or third-party research.

While original data is always a plus, there are plenty of external resources you can access online and even at a library when you’re limited on time or resources.

Some reputable resources you can use include:

  • Pew Research Center
  • McKinley Global Institute
  • Relevant Global or Government Organizations (i.e United Nations or NASA)

It’s also smart to turn to reputable organizations that are specific to your industry or field. For instance, if you’re a gardening or landscaping company, you may want to pull statistics from the Environmental Protection Agency (EPA).

If you’re a digital marketing agency, you could look to Google Research or HubSpot Research . (Hey, I know them!)

What I like: You can save time on gathering data and spend more time on analyzing. You can also rest assured the data is from a source you trust.

What I dislike: You may not find data specific to your needs.

Best for: Companies under a time or resource crunch, adding factual support to content

Pro tip: Fellow HubSpotter Iskiev suggests using third-party data to inspire your original research. “Sometimes, I use public third-party data for ideas and inspiration. Once I have written my survey and gotten all my ideas out, I read similar reports from other sources and usually end up with useful additions for my own research.”

9. Buy Research

If the data you need isn’t available publicly and you can’t do your own market research, you can also buy some. There are many reputable analytics companies that offer subscriptions to access their data. Statista is one of my favorites, but there’s also Euromonitor , Mintel , and BCC Research .

What I like: Same as public domain research

What I dislike: You may not find data specific to your needs. It also adds to your expenses.

Best for: Companies under a time or resource crunch or adding factual support to content

Which marketing research method should you use?

You’re not going to like my answer, but “it depends.” The best marketing research method for you will depend on your objective and data needs, but also your budget and timeline.

My advice? Aim for a mix of quantitative and qualitative data. If you can do your own original research, awesome. But if not, don’t beat yourself up. Lean into free or low-cost tools . You could do primary research for qualitative data, then tap public sources for quantitative data. Or perhaps the reverse is best for you.

Whatever your marketing research method mix, take the time to think it through and ensure you’re left with information that will truly help you achieve your goals.

Don't forget to share this post!

Related articles.

SWOT Analysis: How To Do One [With Template & Examples]

SWOT Analysis: How To Do One [With Template & Examples]

28 Tools & Resources for Conducting Market Research

28 Tools & Resources for Conducting Market Research

What is a Competitive Analysis — and How Do You Conduct One?

What is a Competitive Analysis — and How Do You Conduct One?

Market Research: A How-To Guide and Template

Market Research: A How-To Guide and Template

TAM, SAM & SOM: What Do They Mean & How Do You Calculate Them?

TAM, SAM & SOM: What Do They Mean & How Do You Calculate Them?

How to Run a Competitor Analysis [Free Guide]

How to Run a Competitor Analysis [Free Guide]

5 Challenges Marketers Face in Understanding Audiences [New Data + Market Researcher Tips]

5 Challenges Marketers Face in Understanding Audiences [New Data + Market Researcher Tips]

Causal Research: The Complete Guide

Causal Research: The Complete Guide

Total Addressable Market (TAM): What It Is & How You Can Calculate It

Total Addressable Market (TAM): What It Is & How You Can Calculate It

What Is Market Share & How Do You Calculate It?

What Is Market Share & How Do You Calculate It?

Free Guide & Templates to Help Your Market Research

Marketing software that helps you drive revenue, save time and resources, and measure and optimize your investments — all on one easy-to-use platform

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

land-logo

Article Menu

how many hypothesis should a quantitative research have

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Geoheritage of the iconic en280 leba road (huila plateau, southwestern angola): inventory, geological characterization and quantitative assessment for outdoor educational activities.

how many hypothesis should a quantitative research have

1. Introduction

2. area framework, 2.1. location and accessibility, 2.2. geological and geomorphological settings.

Click here to enlarge figure

3. Methodology

  • Geological Value (GlV): this encompasses secondary indicators such as Scientific Value (ScV) and Additional Values (AdV); GlV = ScV + AdV.
  • Management Value (MnV): this integrates secondary indicators including Use Value (UsV) and Protection Value (PrV); MnV = UsV + PrV.

4. The EN280 Leba Road and the Inventory of Its Outcrops

4.1. identification and type of the geosites, 4.2. characterization and qualitative assessment of geosites, 4.2.1. stop 1 (gl1)—traditional mining clay pit in the humpata plateau, 4.2.2. stop 2 (gl2)—old lime oven of leba, 4.2.3. stop 3 (gl3)—view point of the serra da leba, 4.2.4. stop 4 (gl4)—vertical layers at the beginning of the descent, 4.2.5. stop 5 (gl5)—slope of the fault propagation fold, 4.2.6. stop 6 (gl6)—reverse fault in granitoid rocks, 4.2.7. stop 7 (gl7)—dolerite curve, 4.2.8. stop 8 (gl8)—ductile simple shear zone, 5. quantification of the geosites, 5.1. numerical assessment, 5.1.1. determination of the scientific value (scv), 5.1.2. determination of additional value (adv), 5.1.3. determination of use value (usv), 5.1.4. determination of protection value (prv), 5.1.5. determination of the total value (ttv), 5.2. geosite ranking, 5.3. the meaning of the numerical assessment, 6. outdoor didactic activities for a field guide.

  • Understanding and identifying the general characteristics of the three major rock groups;
  • Familiarity with the origins of the three major rock groups;
  • Recognition of the effects of Earth internal processes on rock deformation;
  • Awareness of the impact of Earth external processes on rock weathering and erosion;
  • Ability to read and interpret maps and scales;
  • Understanding of the regional geology of the Serra da Leba;
  • Acknowledgment of humanity’s role in exploiting and managing georesources and its impact on environmental changes;
  • Familiarity with conduct expectations in an outdoor environment.
  • Recognition of the importance of conserving both the natural and built heritage.

7. Discussion

7.1. the quantification of the proposed geosites: geoheritage and educational potential, 7.2. the geoeducational aspects of the proposed traverse.

  • (b) Geological time and age of the Earth
  • (c) Rock deformation and tectonics
  • (d) Anthropic changes and the sustainable exploitation of georesources

8. Conclusions

Author contributions, data availability statement, acknowledgments, conflicts of interest.

  • Santos, R.V. Abordagens do processo de ensino e aprendizagem. Integração 2003 , 40 , 19–31. [ Google Scholar ]
  • Kali, Y.; Orion, N.; Eylon, B. The effect of knowledge integration activities on students’ perception of the earth’s crust as a cyclic system. J. Res. Sci. Teach. 2003 , 40 , 545–565. [ Google Scholar ] [ CrossRef ]
  • Callapez, P.M.; Audije-Gil, J.; Barroso-Barcenilla, F.; Berrocal-Casero, M.; Brandão, J.M.; Faustino, P.; Ozkaya de Juanas, S.A.; Pimentel, R.; Rodríguez, E.; Santos, V.; et al. Exploring fieldwork education through a context of Iberian cooperation: Activities with sedimentary rocks and fossils in the Cenomanian of Figueira da Foz (Portugal) and Tamajón (Spain). In Libro de Resúmenes del XX Simposio de la Enseñanza de la Geología ; Duque-Mecías, J., Bernal, P.A., Eds.; Agència Menorca Reserva de Biosfera Consell Insular de Menorca: Maó, Spain, 2018; pp. 253–262. [ Google Scholar ]
  • Orion, N. A model for the development and implementation of field trips as an integral part of the science curriculum. Sch. Sci. Math. 1993 , 93 , 325–331. [ Google Scholar ] [ CrossRef ]
  • Pedrinaci, E.; Sequeiros, L.; García, E. El trabajo de campo y el aprendizaje de la Geología. Alambique. Didáctica de las Cienc. Exp. 1994 , 2 , 37–45. [ Google Scholar ]
  • Bonito, J.; Sousa, M.B. Actividades práticas de campo em Geociências: Uma proposta alternativa. In Didácticas: Metodologias da Educação. Braga: Departamento de Metodologias da Educação ; Leite, L., Duarte, M.C., Castro, R.V., Silva, J., Mouro, A.P., Precioso, J., Eds.; Universidade do Minho: Braga, Portugal, 1997; pp. 75–91. [ Google Scholar ]
  • Garcia de La Torre, E. Metodología y secuenciación de las actividades didácticas de Geología de Campo. Enseñanza de las Cienc. de la Tierra 1994 , 2 , 340–353. [ Google Scholar ]
  • Orion, N. Earth Science education: From theory to practice, implementation of new teaching strategies in different learning environments. In Geociências nos Currículos dos Ensinos Básico e Secundário ; Marques, L., Praia, J., Eds.; Universidade de Aveiro: Aveiro, Portugal, 2001; pp. 93–114. [ Google Scholar ]
  • Orion, N. A holistic approach for science education for all. Eurasia J. Math. Sci. Technol. Educ. 2007 , 3 , 99–106. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Orion, N.; Hofstein, A. The measurement of students’ attitudes towards scientific field trips. Sci. Educ. 1991 , 75 , 513–523. [ Google Scholar ] [ CrossRef ]
  • Orion, N.; Hofstein, A. Factors that influence learning during a scientific field trip in a natural environment. J. Res. Sci. Teach. 1994 , 31 , 1097–1119. [ Google Scholar ] [ CrossRef ]
  • Prokop, P.; Tuncer, G.; Kvasničák, R. Short-term effects of field programme on students’ knowledge and attitude toward biology: A Slovak experience. J. Sci. Educ. Technol. 2007 , 16 , 247–255. [ Google Scholar ] [ CrossRef ]
  • Dodick, J.; Orion, N. Building an understanding of geological time: A cognitive synthesis of the “macro” and “micro” scales of time. In Earth and Mind: How Geologists Think and Learn about the Earth ; Manduca, C.A., Mogk, D.W., Eds.; Geological Society of America Special Papers; GeoScienceWorld Books: San Francisco, CA, USA, 2006; Volume 413, pp. 77–93. [ Google Scholar ]
  • Campiani, M.; Carneiro, C. The didactic role played by geological excursions. In International Conference on Geoscience Education training Southampton University, Geoscience Education and Training in Schools and Universities, for Industry and Public Awareness ; Stow, D.A.V., Mccall, G.J.H., Eds.; Balkema: Rotterdam, The Netherlands, 1996; pp. 233–240. [ Google Scholar ]
  • Mondlane, S.; Mapani, B. The role of field work in geoscience education: Trends and constrains. J. Teach. Earth Sci. 2002 , 27 , 129–131. [ Google Scholar ]
  • Ozkaya de Juanas, S.; Barroso-Barcenilla, F.; Callapez, P.M. Didactic and outreach possibilities of the Cretaceous palaeontological site Figueira da Foz (Portugal). Comun. Geológicas 2021 , 128 , 125–130. [ Google Scholar ] [ CrossRef ]
  • Neto, K.; Henriques, M.H. Geoconservation in Africa: State of the art and future challenges. Gondwana Res. 2022 , 110 , 107–113. [ Google Scholar ] [ CrossRef ]
  • Jacobs, L.L.; Schröder, S.; de Sousa, N.; Dixon, R.; Fiordalisi, E.; Marechal, A.; Mateus, O.; Nsungani, P.C.; Polcyn, M.J.; Pereira, G.D.C.R.; et al. The Atlantic jigsaw puzzle and the geoheritage of Angola. Geol. Soc. Lond. Spec. Publ. 2024 , 543 , SP543-2022. [ Google Scholar ] [ CrossRef ]
  • Tormey, D. New approaches to communication and education through geoheritage. Int. J. Geoheritage Parks 2019 , 7 , 192–198. [ Google Scholar ] [ CrossRef ]
  • Lopes, B.S.; Callapez, P.M.; Gomes, C.R. A importância do legado histórico-científico da época colonial na formação de quadros dos PALOP em Ciências Naturais. In Proceedings Book of the II COOPEDU—Cooperation and Education. Africa and the World ; Barreto, M.A., Costa, A.B., Eds.; Centro de Estudos Africanos: Lisbon, Portugal, 2012; Part II, Chapter 1; pp. 234–247. [ Google Scholar ]
  • Lopes, B.S. What do we learn when we teach abroad? Reflections about International Cooperation with developing countries. Procedia Soc. Behav. Sci. 2014 , 116 , 3930–3934. [ Google Scholar ] [ CrossRef ]
  • Lopes, F.C.; Ramos, A.; Romualdo, C.; Ussombo, C. The geoheritage of Lubango-Tundavala road traverse in the Serra da Leba (SW Angola): Outcrops characterization and numerical assessment for outdoor educational activities and geoconservation purpose. J. Afr. Earth Sci. 2019 , 157 , 1–19. [ Google Scholar ] [ CrossRef ]
  • Henriques, M.H.; Tavares, A.O.; Bala, A.L.M. The Geological Heritage of Tundavala (Angola): An integrated approach to its characterization. J. Afr. Earth Sci. 2013 , 88 , 62–71. [ Google Scholar ] [ CrossRef ]
  • Henriques, M.H.; Andrade, A.I.A.S.S.; Lopes, F.C. The Earth Sciences among the Community of Portuguese-Speaking countries and the future of Gondwana. Episodes 2013 , 36 , 255–262. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Henriques, M.H.; Neto, K. Geoheritage at the Equator: Selected Geosites of São Tomé Island (Cameron Line, Central Africa). Sustainability 2015 , 7 , 648–667. [ Google Scholar ] [ CrossRef ]
  • Henriques, M.H.; Neto, K. Geoheritage at the Equator: Revisiting Selected Geosites of São Tomé Island (Cameron Line, Central Africa). In Prime Archives in Sustainability ; Henriques, M.H., Ed.; Vide Leaf: Hyderabad, India, 2019; pp. 1–31. [ Google Scholar ] [ CrossRef ]
  • Tavares, A.O.; Henriques, M.H.; Domingos, A.; Bala, A. Community Involvement in Geoconservation: A Conceptual Approach Based on the Geoheritage of South Angola. Sustainability 2015 , 7 , 4893–4918. [ Google Scholar ] [ CrossRef ]
  • Martínez-Frías, J.; Mogessie, A. The need for a geoscience education roadmap for Africa. Episodes 2012 , 35 , 489–492. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Lopes, F.C.; Pereira, A.J.; Mantas, V.M.; Mpengo, H.K. Morphostructural characterization of the western edge of the Huila Plateau (SW Angola), based on remote sensing techniques. J. Afr. Earth Sci. 2016 , 117 , 114–123. [ Google Scholar ] [ CrossRef ]
  • Delor, C.; Theveniaut, H.; Cage, M.; Pato, D.; Lafon, J.-M.; Bialkowski, A.; Rooig, J.-Y.; Neto, A.; Cavongo, M.; Sergeev, S. New insights into the Precambrian geology of Angola: Basis for an updated lithochronological framework at 1:2,000,000 scale. In Proceedings of the 22nd Colloquium of African Geology, Hammamet, Tunisia, 4 November 2008; Inoubli, M.H., Tlig, S., Mansouri, A., Eds.; pp. 52–53. [ Google Scholar ]
  • Pedreira, A.J.; Waele, B. Contemporaneous Evolution of the Palaeoproterozoic–Mesoproterozoic Sedimentary Basins of the São Francisco–Congo Craton. Geol. Soc. Lond. Spec. Publ. 2008 , 294 , 33–48. [ Google Scholar ] [ CrossRef ]
  • Batumike, J.M.; Griffin, W.L.; O’Reilly, S.Y.; Belousova, E.A.; Pawlitschek, M. Crustal evolution in the central Congo-Kasai Craton, Luebo, D.R. Congo: Insights from zircon U–Pb ages, Hf-isotope and trace-element data. Precambrian Res. 2009 , 170 , 107–115. [ Google Scholar ] [ CrossRef ]
  • McCourt, S.; Armstrong, R.A.; Jelsma, H.; Mapeo, R.B.M. New U-Pb SHRIMP ages from the Lubango region, SW Angola: Insights into the Palaeoproterozoic evolution of the Angolan Shield, southern Congo Craton, Africa. J. Geol. Soc. 2013 , 170 , 353–363. [ Google Scholar ] [ CrossRef ]
  • Carvalho, H. Notice explicative préliminaire sur la géologie d’Angola. Inst. Investig. Trop. Ser. Geol. 1983 , 6 , 15–30. [ Google Scholar ]
  • Carvalho, H.; Alves, P. The precambrian of SW Angola and NW Namibia. In Comunicações. Instituto de Investigação Científica Tropical, Série Ciências da Terra ; Instituto de Investigação Científica Tropical: Lisbon, Portugal, 1993; Volume 4, pp. 1–38. [ Google Scholar ]
  • Ferreira da Silva, A. A geologia da República de Angola desde o Paleoarcaico ao Paleozóico Inferior. Bol. de Minas 2009 , 44 , 99–162. [ Google Scholar ]
  • Torquato, J.; Silva, A.; Cordani, U.; Kawashita, K. Evolução Geológica do Cinturão Móvel do Quipungo no Ocidente de Angola. Acad. Bras. Ciências 1979 , 51 , 133–144. [ Google Scholar ]
  • Carvalho, H. Estratigrafia do Precâmbrico de Angola. Garcia de Orta, Série Geológica 1984 , 7 , 1–66. [ Google Scholar ]
  • Carvalho, H.; Tassinari, C.; Alves, P.; Guimaraes, F.; Simoes, M. Geochronological review of the Precambrian in western Angola: Links with Brazil. J. Afr. Earth Sci. 2000 , 31 , 383–402. [ Google Scholar ] [ CrossRef ]
  • Correia, H. Sobre a existência de rochas vulcanoclásticas na Formação da Chela (Região do Planalto da Humpata). In Ciências Geológicas, Cursos de Ciências ; Universidade de Luanda: Luanda, Angola, 1973; Volume 1, pp. 27–32. [ Google Scholar ]
  • Correia, H. O grupo Chela e a Formação da Leba como novas unidades litoestratigráficas resultantes da redefinição da Formação da Chela na região do planalto da Humpata (SW de Angola). Bol. Soc. Geol. Portugal 1976 , 20 , 65–130. [ Google Scholar ]
  • Pereira, E.; Tassinari, C.C.G.; Rodrigues, J.F.; Van-Dúnem, M.V. New data on the deposition age of the volcano-sedimentary Chela Group and its Eburnean basement: Implications to post- Eburnean crustal evolution of the SW of Angola. Comun. Geológicas 2011 , 98 , 29–40. [ Google Scholar ]
  • Pereira, E.; Rodrigues, J.; Van Dúnem, M.V. Carta Geológica de Angola, à escala 1:250 000: Folha Sul D-33/T (Chibia) ; Publicação do Instituto Geológico de Angola: Kilamba, Angola, 2013. [ Google Scholar ]
  • Duarte, L.V.; Barata, J.; Oliveira, C.L. Aspetos microfaciológicos da Formação da Leba, Proterozoico (Sudoeste de Angola). Comun. Geológicas 2024 , in press . [ Google Scholar ]
  • Dinis, P.; Mantas, V.; Santarém Andrade, P.; Tonecas, J.; Kapula, E.; Pereira, A.; Carvalho, F. Contribution of TRMM rainfall data to the study of natural systems and risk assessment. Cases of application in SW Angola. Estud. Quatern./Quat. Stud. 2013 , 9 , 33–43. [ Google Scholar ] [ CrossRef ]
  • Andrade, P.S.; Gonçalves, G.N.; Quinta-Ferreira, M. Rock Fall Analysis on the City of Lubango, SW Angola. In Engineering Geology for Society and Territory. Landslide Processes ; Lollino, G., Giordan, D., Crosta, G., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer: Berlin, Germany, 2015; pp. 2027–2030. [ Google Scholar ] [ CrossRef ]
  • Andrade, P.S.; André, I.; Callapez, P.M. Stability Assessment of Road Slopes, SW Angola. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference SGEM 2017, Varna, Bulgaria, 29 June–5 July 2017; Hydrogeology, Engineering Geology and Geotechnics. pp. 785–792. [ Google Scholar ] [ CrossRef ]
  • Gray, J.M. Geodiversity: Developing the paradigma. Proceeding Geol. Assoc. 2008 , 11 , 287–298. [ Google Scholar ] [ CrossRef ]
  • Elízaga, E.; Gallego, E.; García-Cortés, A. Inventaire national des sites d’intérêt géologique en Espagne: Méthodologie et déroulement. Mém.Soc. Géol. Fr. 1994 , 165 , 103–109. [ Google Scholar ]
  • Duarte, L.V. The geological heritage of the Lower Jurassic of Central Portugal: Selected sites, inventory and main scientific arguments. Riv. Ital. Paleontol. Stratigr. 2004 , 110 , 381–388. [ Google Scholar ]
  • Brilha, J. Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage 2016 , 8 , 119–134. [ Google Scholar ] [ CrossRef ]
  • Brilha, J. Geoheritage: Inventories and Evaluation. In Geoheritage. Assessment, Protection, and Management ; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 4; pp. 69–85. [ Google Scholar ] [ CrossRef ]
  • Pereira, P.; Pereira, D.; Caetano Alves, M.I. Geomorphosite assessment in Montesinho Natural Park (Portugal). Geogr. Helv. 2007 , 62 , 159–168. [ Google Scholar ] [ CrossRef ]
  • Pereira, P.; Pereira, D. Methodological guidelines for geomorphosite assessment Indications méthodologiques pour l’évaluation des géomorphosites. Géomorph. Relief Process. Environ. 2010 , 2 , 215–222. [ Google Scholar ] [ CrossRef ]
  • Dourado, L.; Leite, L. Field activities, science education and problem-solving. Procedia-Soc. Behav. Sci. 2013 , 106 , 1232–1241. [ Google Scholar ] [ CrossRef ]
  • Amador, F. Programa de Biologia e Geologia—10°. Curso Científico-Humanístico de Ciências e Tecnologias ; Revoked by Order 6605–A/2021, July 6; Ministério da Educação, Departamento do Ensino Secundário: Lisbon, Portugal, 2001. [ Google Scholar ]
  • Amador, F. Programa de Biologia e Geologia—11°. Curso Científico-Humanístico de Ciências e Tecnologias ; Revoked by Order 6605–A/2021, July 6; Ministério da Educação, Departamento do Ensino Secundário: Lisbon, Portugal, 2001. [ Google Scholar ]
  • Camarate França, J. Notas e comunicações sobre uma jazida de fácies mesolítica do sul de Angola. In Estudos Coloniais: Ver. Esc. Sup. Colonial 1952 , 3 , 303–310. [ Google Scholar ]
  • Ervedosa, C. Arqueologia Angolana ; Edições 70: Lisboa, Portugal, 1980. [ Google Scholar ]
  • Matos, D.; Pereira, T. Middle Stone Age lithic assemblages from Leba Cave (Southwest Angola). J. Archaeol. Sci. Rep. 2020 , 32 , 102413. [ Google Scholar ] [ CrossRef ]
  • Duarte, L.V.; Callapez, P.M.; Kalukembe, A.; Gonçalves, A.; Segundo, J.C.; Lapão, L.; Prata, M.E.; Bandeira, M.; Cristino, A.T. Do Proterozoico da Serra da Leba (Planalto da Humpata) ao Cretácico da Bacia de Benguela (Angola). A geologia de lugares com elevado valor paisagístico. Comun. Geológicas 2014 , 101 , 1255–1259. [ Google Scholar ]
  • Kalukembe, A.; Duarte, L.V.; Callapez, P.; Dinis, P. The contribution of Neoproterozoic stromatolite buildups for the carbonate framework and karstic morphology of the Humpata plateau (SW Angola). In Proceedings of the 10th International Conference on Geomorphology, Coimbra, Portugal, 12–16 September 2022. [ Google Scholar ] [ CrossRef ]
  • Marques, L.; Praia, J.; Andrade, A.S. Actividades exteriores à sala de aula em ambientes formais de ensino das ciências: Sua relevância. In A Terra. Conflitos e ordem. Livro de Homenagem ao Professor Ferreira Soares ; Callapez, P., Rocha, R., Marques, J., Cunha, L., Dinis, P., Eds.; Museu Mineralógico e Geológico da Universidade de Coimbra: Coimbra, Portugal, 2008; pp. 325–342. [ Google Scholar ]
  • Brilha, J. Património geológico e geoconservação. In A Conservação da Natureza na Sua Vertente Geológica ; Editora Palimage: Viseu, Portugal, 2005. [ Google Scholar ]
  • Brilha, J. Geoconservation, concept of. In Encyclopedia of Mineral and Energy Policy ; Tiess, G., Majumder, T., Cameron, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–2. [ Google Scholar ]
  • Panizza, M. Geomorphosites: Concepts, methods and example of geomorphological survey. Chin. Sci. Bull. 2001 , 46 , 4–6. [ Google Scholar ] [ CrossRef ]
  • Reynard, E. Geomorphosites et paysages. Géomorph. Relief Process. Environ. 2005 , 3 , 181–188. [ Google Scholar ] [ CrossRef ]
  • Reynard, E. The assessment of geomorphosites. In Geomorphosites ; Reynard, E., Coratza, P., Regolini-Bissig, G., Eds.; Verlag Friedrich Pfeil: Munchen, Germany, 2009; pp. 63–72. [ Google Scholar ]
  • Reynard, E.; Fontana, G.; Kozlik, L.; Scapozza, C. A method for assessing ‘scientific’ and ‘additional values’ of geomorphosites. Geogr. Helv. 2007 , 62 , 148–158. [ Google Scholar ] [ CrossRef ]
  • Stokes, A.; Boyle, A.P. The undergraduate geoscience fieldwork experience: Influencing factors and implications for learning. In Field Geology Education: Historical Perspectives and Modem Approaches ; WhiLmcycr, S., Mogk, D.W., Pyle, E., Eds.; Geological Society of America Special Paper 461; The Geological Society of America: Boulder, CO, USA, 2009; pp. 291–311. [ Google Scholar ] [ CrossRef ]
  • Hoyer, L.; Hastie, W.W. Geoscience undergraduate students’ perceptions of how field work and practical skills influence their conceptual understanding and subject interest. J. Geosci. Educ. 2023 , 71 , 158–176. [ Google Scholar ] [ CrossRef ]
  • Pinho, A.B.; Gonçalves, A.O.; Morais, E.A.; Duarte, I.M.R.; Lopes, L. From the Humpata Plateau to the Namibe Desert, SW Angola. In 35th International Geological Post-Congress Field Trip in Angola (EXSA-POST 6) Guidebook ; Geological Society of South Africa : Johannesburg, South Africa, 2016. [ Google Scholar ]
  • Dowling, R.K. Geotourism’s global growth. Geoheritage 2011 , 3 , 1–13. [ Google Scholar ] [ CrossRef ]
  • Hose, T.A. 3G’s for modern geotourism. Geoheritage 2012 , 4 , 7–24. [ Google Scholar ] [ CrossRef ]
  • Ruban, D.A. Geotourism—A geographical review of the literature. Tour. Manag. Perspect. 2015 , 15 , 1–5. [ Google Scholar ] [ CrossRef ]
  • Suzuki, D.A.; Takagi, H. Evaluation of geosite for sustainable planning and managementin geotourism. Geoheritage 2017 , 10 , 1–13. [ Google Scholar ] [ CrossRef ]
  • Muto, F.; Biondino, D.; Crisci, G.M.; Marabini, S.; Procopio, F.; Scarciglia, F.; Vai, G.B. Pages of Earth History in an Exceptional Uniqueness: The Geo-Heritage of the Sila National Park and its Spheroidal Boulders Geosite (Northern Calabria, Italy). Geohearitage 2024 , 16 , 2–28. [ Google Scholar ] [ CrossRef ]
  • Sen, S.; Abouelresh, M.O.; Al-Musabeh, A.H.; Al-Ismail, F.S. Potential geoheritage resources in Saudi Arabia for geotourism development: In the context of IUCN theme. Int. J. Geoheritage Parks 2014 , 12 , 98–112. [ Google Scholar ] [ CrossRef ]
Scientific ValuesScV
Rareness in relation to the areaRa
It is not one of the most important 50
It is not one of the most important 30.25
One of the most important 30.50
The most important0.75
Single occurrence1.00
Integrity/IntactnessIn
Highly damaged as a result of human activities0
Damaged as a result of natural processes0.25
Damaged but preserving essential geological features0.50
Slightly damaged but still maintaining the essential geological features0.75
No visible damage1.00
Representativeness of geological processes and pedagogical interestRp
Low representativeness and without pedagogical interest0
With some representativeness but with low pedagogical interest0.33
Good example of processes but hard to explain to non-experts0.67
Good example of processes and/or good pedagogical resource1.00
Number of interesting geomorphological features (diversity)Dv
10
20.33
30.67
More than 31.00
Other geological features with heritage valueGe
Absence of other geological features0
Other geological features but without relation to geomorphology0.17
Other geological features with relation to geomorphology0.33
Occurrence of other geosite(s)0.50
Scientific knowledge of geomorphological issuesKn
None0
Medium: presentations, national papers0.25
High: international papers, thesis0.50
Rareness at national levelRn
Rn > 5 occurrences0
3 > Rn < 5 occurrences0.17
2 occurrences0.33
Single occurrence0.50
Rareness in relation to the areaRa
It is not one of the most important 50
It is not one of the most important 30.25
One of the most important 30.50
The most important0.75
Single occurrence1.00
Integrity/IntactnessIn
Highly damaged as a result of anthropic activities0
Damaged as a result of natural processes0.25
Damaged but preserving essential geomorphological features0.50
Slightly damaged but still maintaining the essential geomorphological features0.75
No visible damage1.00
Additional ValuesAdV
Cultural ValueCu
Without cultural features or with cultural features damaging the site0
Cultural features with no connection to landforms0.25
Relevant cultural features with no connection to landforms0.50
Immaterial cultural features related to landforms0.75
Material cultural features related to landforms1.00
Relevant material cultural features related to landforms1.25
Anthropic landform with high cultural relevance1.50
Aesthetic ValueAest
LowSubjective analysis of: visual singularity of landforms; panoramic quality; objects and color diversity/combination; presence of water bodies and vegetation cover; degree of anthropic deterioration; proximity to the observed features.0–0.5
Medium0.5–1.0
High1.0–1.5
Ecological ValueEcol
Without relation to biological features0
Occurrence of interesting flora and/or fauna0.38
One of the best places to observe interesting flora and/or fauna0.75
Geomorphological features are important for ecosystem(s)1.12
Geomorphological features are crucial for the ecosystem(s)1.50
Use ValuesUsV
AccessibilityAc
Very difficult, only possible with special equipment0
Only by four-wheel-drive vehicle and >500 metres by footpath0.21
By car and >500 metres by footpath0.43
By car and <500 metres by footpath0.64
By four-wheel-drive vehicle and <100 metres by footpath0.86
By car and <50 metres by footpath1.07
By bus on local roads and <50 metres by footpath1.29
By bus on national roads and <50 metres by footpath1.50
VisibilityVi
Very difficult or not visible at all0
Can only be viewed using special equipment (e.g., artificial light, ropes) 0.30
Limited by trees or lower vegetation0.60
Good but the need to move around for a complete observation0.90
Good for all relevant geological features1.20
Excellent for all relevant geological features1.50
Present use of the geological interestGu
Without promotion and not being used0
Without promotion but being used0.33
Promoted/used as landscape site0.67
Promoted/used as geomorphosite or geosite1.00
Present use of other natural and cultural interestsOu
Without other interests, promotion, or use0
With other interests but without promotion or use0.33
With other interests and their promotion, but without other use0.67
With other interests, with promotion and use1.00
Legal protection and use limitationsLp
With total protection and prohibitive use0
With protection, with use restriction0.33
Without protection and without use restriction0.67
With protection but without use restriction or with very low use restriction1.00
Equipment and support servicesEq
Hostelry and support services are >25 km away0
Hostelry and support services are 10 < 25 km away0.25
Hostelry and support services are 5 < 10 km away0.50
Hostelry or support services are <5 km away0.75
Hostelry and support services are <5 km away1.00
Protection ValuesPrV
Integrity/IntactnessIn
Highly damaged as a result of anthropic activities0
Damaged as a result of natural processes0.25
Damaged but preserving essential geomorphological features0.50
Slightly damaged but still maintaining the essential geomorphological features0.75
No visible damage1.00
Vulnerability of use as geositeVu
Very vulnerable, with possibility of total loss0
Geomorphological features may be damaged0.50
Other, non-geomorphological features may be damaged1.00
Damage can occur only in/along the access structures1.50
Not vulnerable2.00
Stop
(Geosite)
NameDimensionThematic Category
Stop 1
(GL1)
Traditional mining clay pit in the Humpata PlateauLocalSedimentology (claystones); tectonics; weathering; georesources; geocultural
Stop 2
(GL2)
Old lime oven of LebaLocalSedimentology (cherty dolostones); paleontology (stromatolites); georesources; geocultural
Stop 3
(GL3)
Viewpoint of the Serra da LebaLandscapeVolcano-sedimentary; granitoids; geoforms; tectonics; weathering; fluvial drainage; slope instability
Stop 4
(GL4)
Vertical layers at the beginning of the descentLocalVolcano-sedimentary rocks; tectonics; slope instability
Stop 5
(GL5)
Slope of the fault propagation foldAreaVolcano-sedimentary rocks; tectonics; weathering
Stop 6
(GL6)
Reverse fault in granitoid rocksLocalMagmatism (granitoids); tectonics
Stop 7
(GL7)
Dolerite CurveLocalMagmatism (granodiorite; dolerite); tectonics
Stop 8
(GL8)
Ductile simple shear zoneLocalMagmatism/metamorfism (granodiorite; mylonite); tectonics
NameScientific Value (ScV)
RaInRpDvGeKnRnTotal
Traditional mining clay pit1010.330.330.302.96
Old lime oven of Leba10.510.670.330.50.54.50
Viewpoint of the Serra da Leba10.75110.50.50.55.25
Vertical layers at the beginning of the descent0.250.510.330.330.30.22.91
Slope of the fault propagation fold10.510.670.50.30.54.47
Reverse fault in granitoid rocks10.510.330.330.30.23.66
Dolerite Curve10.510.670.50.30.24.17
Ductile simple shear zone0.50.510.330.50.30.23.33
NameAdditional Value (AdV)
CulturalAestheticEcologicalTotal
Traditional mining clay pit00.500.50
Old lime oven of Leba110.382.38
Viewpoint of the Serra da Leba11.50.382.88
Vertical layers at the beginning of the descent00.500.50
Slope of the fault propagation fold010.381.38
Reverse fault in granitoid rocks0101.00
Dolerite Curve010.381.38
Ductile simple shear zone010.381.38
NameUse Value (UsV)
AcViGuOuLpEqTotal
Traditional mining clay pit0.641.500.330.670.53.64
Old lime oven of Leba1.071.510.670.670.755.66
Viewpoint of the Serra da Leba1.51.5110.670.756.42
Vertical layers at the beginning of the descent1.51.500.330.670.754.75
Slope of the fault propagation fold1.51.50.670.330.670.755.42
Reverse fault in granitoid rocks1.51.50.330.330.670.54.83
Dolerite Curve1.51.50.670.330.670.55.17
Ductile simple shear zone1.51.50.330.330.670.54.83
NameProtection Value (PrV)
InVuTotal
Traditional mining clay pit in the Humpata Plateau000
Old lime oven of Leba0.50.51
Viewpoint of the Serra da Leba0.50.51
Vertical layers at the beginning of the descent0.50.51
Slope of the fault propagation fold0.50.51
Reverse fault in granitoid rocks0.500.5
Dolerite Curve0.50.51
Ductile simple shear zone0.50.51
NameScVAdVGIVUsVPrVMnVTtV
Traditional mining clay pit (GL1)2.960.53.463.6403.647.10
Old lime oven of Leba (GL2)4.502.386.885.6616.6613.54
Viewpoint of the Serra da Leba (GL3)5.252.888.136.4217.4215.55
Vertical layers at the beginning of the descent (GL4)2.910.53.414.7515.759.16
Slope of the fault propagation fold (GL5)4.471.385.855.4216.4212.27
Reverse fault in granitoid rocks (GL6)3.6614.664.830.55.339.99
Dolerite Curve (GL7)4.171.385.555.1716.1711.72
Ductile simple shear zone (GL8)3.331.384.714.8315.8310.54
RankScientific Value (ScV)Add. Value (AdV)Geol. Value (GIV)Use Value (UsV)Protect. Value (PrV)Manag. Value (MnV)Total Value (TtV)Final Ranking (Rk)
1stGL3—5.25GL3—2.88GL3—8.13GL3—6.42GL2—1GL3—7.42GL3—15.55GL3—8
2ndGL2—4.5GL2—2.38GL2—6.88GL2—5.66GL3—1GL2—6.66GL2—13.54GL2—13
3rdGL5—4.47GL5—1.38GL5—5.85GL5—5.42GL4—1GL5—6.42GL5—12.27GL5—22
4thGL7—4.17GL7—1.38GL7—5.55GL7—5.17GL5—1GL7—6.17GL7—11.72GL7—29
5thGL6—3.66GL8—1.38GL8—4.71GL6—4.83GL7—1GL8—5.83GL8—10.54GL8—38
6thGL8—3.33GL6—1GL6—4.66GL8—4.83GL8—1GL4—5.75GL6—9.99GL6—42
7thGL1—2.96GL1—0.5GL1—3.46GL4—4.75GL6—0.5GL6—5.33GL4—9.16GL4—47
8thGL4—2.91GL4—0.5GL4—3.41GL1—3.64GL1—0GL1—3.64GL1—7.10GL1—53
StopsTasks: to Observe/To Record/To Interpret
Stop 1 (GL1)
15°5′20.78″ S; 13°18′19.18″ E
Traditional mining clay pit in the Humpata Plateau
Time: 30 min.
To use maps for location on the trip traverse;
Proper use of geologist’s hammer, magnifying glass, and compass.
Photographic record and description of the characteristics observed in the outcrop and surrounding landscape.
Registration and description in the field notebook.
Identify rock type and dominant structures
Stop 2 (GL2)
15°05′0.30″ S; 13°15′32.34″ E
Old lime oven of Leba
Time: 30 min.
Note:
- Dominant weathering processes;
- Stromatolite layers
- Outcropping rock type;
- Dominant rock structures;
Stop 3 (GL3)
15°04′36.45″ S; 13°14′5.16″ E
Viewpoint of the Serra da Leba
Time: 30 min.
Pay attention to:
- The topographic step between the top and bottom of the plateau towards the west;
- Differential weathering and erosion of the slopes and its relationship with the outcropping lithology;
- The type of outcropping rock on the escarpment of the viewpoint;
- The direction of the dominant joins systems on the escarpment of the viewpoint;
- The dominant weathering process and the dominant erosive agent;
- The influence of rock structure on weathering and instability situations of the viewpoint escarpment.
- The dominant structures
Stop 4 (GL4)
15°04′18.34″ S; 13°14′14.83″ E
Vertical layers at the beginning of the descent
Time: 30 min.
Note:
- The type of outcropping rock;
- Dominant structures;
- Slope instability.
Stop 5 (GL5)
15°04′22.32″ S; 13°14′10.74″ E
Slope of the fault propagation fold
Time: 30 min.
Note:
- The type of outcropping rock;
- The attitude of rock strata along the slope;
- The dominant structures.
Stop 6 (GL6)
15°03′27.72″ S; 13°14′16.14″ E
Reverse fault in granitoids rocks
Time: 30 min.
Note:
- The type and aspect of the outcropping rocks;
- The dominant tectonic structures.
Stop 7 (GL7)
15°02′59.46″ S; 13°14′16.80″ E
Dolerite Curve
Time: 30 min.
Observe the kind of lithologies and dominant structures.
Stop 8 (GL8)
15°03′23.75″ S; 13°13′19.71″ E
Ductile simple shear zone
Time: 30 min.
Note the types of lithology, texture, and dominant structures.
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Lopes, F.C.; Ramos, A.M.; Callapez, P.M.; Andrade, P.S.; Duarte, L.V. Geoheritage of the Iconic EN280 Leba Road (Huila Plateau, Southwestern Angola): Inventory, Geological Characterization and Quantitative Assessment for Outdoor Educational Activities. Land 2024 , 13 , 1293. https://doi.org/10.3390/land13081293

Lopes FC, Ramos AM, Callapez PM, Andrade PS, Duarte LV. Geoheritage of the Iconic EN280 Leba Road (Huila Plateau, Southwestern Angola): Inventory, Geological Characterization and Quantitative Assessment for Outdoor Educational Activities. Land . 2024; 13(8):1293. https://doi.org/10.3390/land13081293

Lopes, Fernando Carlos, Anabela Martins Ramos, Pedro Miguel Callapez, Pedro Santarém Andrade, and Luís Vítor Duarte. 2024. "Geoheritage of the Iconic EN280 Leba Road (Huila Plateau, Southwestern Angola): Inventory, Geological Characterization and Quantitative Assessment for Outdoor Educational Activities" Land 13, no. 8: 1293. https://doi.org/10.3390/land13081293

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

IMAGES

  1. how to write a hypothesis for quantitative research

    how many hypothesis should a quantitative research have

  2. Research Hypothesis: Definition, Types, Examples and Quick Tips

    how many hypothesis should a quantitative research have

  3. how to write a hypothesis for quantitative research

    how many hypothesis should a quantitative research have

  4. 13 Different Types of Hypothesis (2024)

    how many hypothesis should a quantitative research have

  5. Quantitative research paper hypothesis

    how many hypothesis should a quantitative research have

  6. Quantitative Research Hypothesis Examples

    how many hypothesis should a quantitative research have

COMMENTS

  1. A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

    Hypotheses in quantitative research. In quantitative research, hypotheses predict the expected relationships among variables.15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable (simple hypothesis) or 2) between two or more independent and dependent variables ...

  2. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  3. How many hypotheses should I write for my study?

    In my research, I have linear regressions, Chi-squares, and t-tests due different types of variables. ... Is it necessary to include a hypothesis in a quantitative research proposal and why ...

  4. Research Questions & Hypotheses

    The primary research question should originate from the hypothesis, not the data, and be established before starting the study. Formulating the research question and hypothesis from existing data (e.g., a database) can lead to multiple statistical comparisons and potentially spurious findings due to chance.

  5. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Quick tips on writing a hypothesis. 1. Be clear about your research question. A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem.

  6. What is a Research Hypothesis: How to Write it, Types, and Examples

    It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.

  7. How to Write a Strong Hypothesis

    Step 4: Refine your hypothesis. You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain: The relevant variables. The specific group being studied.

  8. Formulating Hypotheses for Different Study Designs

    Formulating Hypotheses for Different Study Designs. Generating a testable working hypothesis is the first step towards conducting original research. Such research may prove or disprove the proposed hypothesis. Case reports, case series, online surveys and other observational studies, clinical trials, and narrative reviews help to generate ...

  9. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  10. What Is A Research Hypothesis? A Simple Definition

    A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes - specificity, clarity and testability. Let's take a look at these more closely.

  11. PDF Research Questions and Hypotheses

    Most quantitative research falls into one or more of these three categories. The most rigorous form of quantitative research follows from a test of a theory (see Chapter 3) and the specification of research questions or hypotheses that are included in the theory. The independent and dependent variables must be measured sepa-rately.

  12. How to Write a Research Hypothesis

    A well-written hypothesis should predict the tested relationship and its outcome. It contains zero ambiguity and offers results you can observe and test. The research hypothesis should address a question relevant to a research area. Overall, your research hypothesis needs the following essentials: Hypothesis Essential #1: Specificity & Clarity

  13. Constructing Hypotheses in Quantitative Research

    Hypotheses are the testable statements linked to your research question. Hypotheses bridge the gap from the general question you intend to investigate (i.e., the research question) to concise statements of what you hypothesize the connection between your variables to be. For example, if we were studying the influence of mentoring relationships ...

  14. Research questions, hypotheses and objectives

    Research hypothesis. The primary research question should be driven by the hypothesis rather than the data. 1, 2 That is, the research question and hypothesis should be developed before the start of the study. This sounds intuitive; however, if we take, for example, a database of information, it is potentially possible to perform multiple ...

  15. Hypotheses

    An hypothesis is a specific statement of prediction. It describes in concrete (rather than theoretical) terms what you expect will happen in your study. Not all studies have hypotheses. Sometimes a study is designed to be exploratory (see inductive research ). There is no formal hypothesis, and perhaps the purpose of the study is to explore ...

  16. Research Hypotheses

    The research hypothesis is central to all research endeavors, whether qualitative or quantitative, exploratory or explanatory. At its most basic, the research hypothesis states what the researcher expects to find - it is the tentative answer to the research question that guides the entire study. Developing testable research hypotheses takes ...

  17. Is it necessary to include a hypothesis in a quantitative research

    The hypothesis in the proposal is very important because it can influence a study by directing a researcher to have a nice objective, research question, and a design for your study. Hypothesis ...

  18. Quantitative Research

    To test a hypothesis: Quantitative research is often used to test a hypothesis or a theory. It involves collecting numerical data and using statistical analysis to determine if the data supports or refutes the hypothesis. ... Quantitative research is used in many different fields, including social sciences, business, engineering, and health ...

  19. Is it a must for a quantitative study to have hypotheses?

    Popular answers (1) Muayyad Ahmad. University of Jordan. Hi, No, it is not a must to have hypotheses in all quantitative research. Descriptive studies dont need hypotheses. however, RCT and ...

  20. LibGuides: Quantitative Research Methods: Hypothesis Testing

    P-Values. The p-value of a hypothesis test is the probability that your sample data would have occurred if you hypothesis were not correct. Traditionally, researchers have used a p-value of 0.05 (a 5% probability that your sample data would have occurred if your hypothesis was wrong) as the threshold for declaring that a hypothesis is true.

  21. Research Questions and Hypotheses

    These factors include: (a) the types of quantitative research questions you are trying to answer; (b) the variables you want to measure, manipulate and/or control; (c) how you should structure your research questions; and (d) whether you should use research questions as opposed to research hypotheses. Understanding these factors is important ...

  22. Correcting misconceptions

    Many students have misconceptions about what science is and how it works. This section explains and corrects some of the most common misconceptions that students are likely have trouble with. If you are interested in common misconceptions about teaching the nature and process of science, visit our page on that topic. Jump to: Misinterpretations of the scientific

  23. Conducting and Writing Quantitative and Qualitative Research

    In quantitative research, the hypothesis is stated before testing. In qualitative research, the hypothesis is developed through inductive reasoning based on the data collected.27,28 For types of data and their analysis, qualitative research usually includes data in the form of words instead of numbers more commonly used in quantitative research.29

  24. 9 Best Marketing Research Methods to Know Your Buyer Better [+ Examples]

    Personally, I say any research is good research, but if you have the time and resources, primary research is hard to top. With it, you don't have to worry about your source's credibility or how relevant it is to your specific objective. You are in full control and best equipped to get the reliable information you need. 3. Put it all together.

  25. Is there any limit in setting up the number of research questions

    one research question can have more than one research hypothesis but it will be good if it is only one. mean 1 Research question 1 Hypothesis. ... In quantitative research we may be more specific ...

  26. Land

    The EN280 Leba Road is a mountain road that runs along the western slope of Serra da Leba (Humpata Plateau) and its outstanding escarpments, connecting the hinterland areas of the Province of Huila to the coastal Atlantic Province of Namibe, in Southwest Angola. In the Serra da Leba ranges, as in Humpata Plateau, a volcano-sedimentary succession of Paleo-Mesoproterozoic age known as the Chela ...