Problem-Solving Method in Teaching

The problem-solving method is a highly effective teaching strategy that is designed to help students develop critical thinking skills and problem-solving abilities . It involves providing students with real-world problems and challenges that require them to apply their knowledge, skills, and creativity to find solutions. This method encourages active learning, promotes collaboration, and allows students to take ownership of their learning.

Table of Contents

Definition of problem-solving method.

Problem-solving is a process of identifying, analyzing, and resolving problems. The problem-solving method in teaching involves providing students with real-world problems that they must solve through collaboration and critical thinking. This method encourages students to apply their knowledge and creativity to develop solutions that are effective and practical.

Meaning of Problem-Solving Method

The meaning and Definition of problem-solving are given by different Scholars. These are-

Woodworth and Marquis(1948) : Problem-solving behavior occurs in novel or difficult situations in which a solution is not obtainable by the habitual methods of applying concepts and principles derived from past experience in very similar situations.

Skinner (1968): Problem-solving is a process of overcoming difficulties that appear to interfere with the attainment of a goal. It is the procedure of making adjustments in spite of interference

Benefits of Problem-Solving Method

The problem-solving method has several benefits for both students and teachers. These benefits include:

  • Encourages active learning: The problem-solving method encourages students to actively participate in their own learning by engaging them in real-world problems that require critical thinking and collaboration
  • Promotes collaboration: Problem-solving requires students to work together to find solutions. This promotes teamwork, communication, and cooperation.
  • Builds critical thinking skills: The problem-solving method helps students develop critical thinking skills by providing them with opportunities to analyze and evaluate problems
  • Increases motivation: When students are engaged in solving real-world problems, they are more motivated to learn and apply their knowledge.
  • Enhances creativity: The problem-solving method encourages students to be creative in finding solutions to problems.

Steps in Problem-Solving Method

The problem-solving method involves several steps that teachers can use to guide their students. These steps include

  • Identifying the problem: The first step in problem-solving is identifying the problem that needs to be solved. Teachers can present students with a real-world problem or challenge that requires critical thinking and collaboration.
  • Analyzing the problem: Once the problem is identified, students should analyze it to determine its scope and underlying causes.
  • Generating solutions: After analyzing the problem, students should generate possible solutions. This step requires creativity and critical thinking.
  • Evaluating solutions: The next step is to evaluate each solution based on its effectiveness and practicality
  • Selecting the best solution: The final step is to select the best solution and implement it.

Verification of the concluded solution or Hypothesis

The solution arrived at or the conclusion drawn must be further verified by utilizing it in solving various other likewise problems. In case, the derived solution helps in solving these problems, then and only then if one is free to agree with his finding regarding the solution. The verified solution may then become a useful product of his problem-solving behavior that can be utilized in solving further problems. The above steps can be utilized in solving various problems thereby fostering creative thinking ability in an individual.

The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to succeed in school and in life.

  • Jonassen, D. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. Routledge.
  • Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235-266.
  • Mergendoller, J. R., Maxwell, N. L., & Bellisimo, Y. (2006). The effectiveness of problem-based instruction: A comparative study of instructional methods and student characteristics. Interdisciplinary Journal of Problem-based Learning, 1(2), 49-69.
  • Richey, R. C., Klein, J. D., & Tracey, M. W. (2011). The instructional design knowledge base: Theory, research, and practice. Routledge.
  • Savery, J. R., & Duffy, T. M. (2001). Problem-based learning: An instructional model and its constructivist framework. CRLT Technical Report No. 16-01, University of Michigan. Wojcikowski, J. (2013). Solving real-world problems through problem-based learning. College Teaching, 61(4), 153-156

Micro Teaching Skills

Center for Teaching

Teaching problem solving.

Print Version

Tips and Techniques

Expert vs. novice problem solvers, communicate.

  • Have students  identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
  • If students are unable to articulate their concerns, determine where they are having trouble by  asking them to identify the specific concepts or principles associated with the problem.
  • In a one-on-one tutoring session, ask the student to  work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
  • When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)

Encourage Independence

  • Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
  • Have students work through problems on their own. Ask directing questions or give helpful suggestions, but  provide only minimal assistance and only when needed to overcome obstacles.
  • Don’t fear  group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others

Be sensitive

  • Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing  positive reinforcement to let students know when they have mastered a new concept or skill.

Encourage Thoroughness and Patience

  • Try to communicate that  the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.

Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills,  a teacher should be aware of principles and strategies of good problem solving in his or her discipline .

The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book  How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes  a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.

problem solving as a teaching and learning strategy

Teaching Guides

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules
  • Faculty & Staff

Teaching problem solving

Strategies for teaching problem solving apply across disciplines and instructional contexts. First, introduce the problem and explain how people in your discipline generally make sense of the given information. Then, explain how to apply these approaches to solve the problem.

Introducing the problem

Explaining how people in your discipline understand and interpret these types of problems can help students develop the skills they need to understand the problem (and find a solution). After introducing how you would go about solving a problem, you could then ask students to:

  • frame the problem in their own words
  • define key terms and concepts
  • determine statements that accurately represent the givens of a problem
  • identify analogous problems
  • determine what information is needed to solve the problem

Working on solutions

In the solution phase, one develops and then implements a coherent plan for solving the problem. As you help students with this phase, you might ask them to:

  • identify the general model or procedure they have in mind for solving the problem
  • set sub-goals for solving the problem
  • identify necessary operations and steps
  • draw conclusions
  • carry out necessary operations

You can help students tackle a problem effectively by asking them to:

  • systematically explain each step and its rationale
  • explain how they would approach solving the problem
  • help you solve the problem by posing questions at key points in the process
  • work together in small groups (3 to 5 students) to solve the problem and then have the solution presented to the rest of the class (either by you or by a student in the group)

In all cases, the more you get the students to articulate their own understandings of the problem and potential solutions, the more you can help them develop their expertise in approaching problems in your discipline.

Teaching Problem-Solving Skills

Many instructors design opportunities for students to solve “problems”. But are their students solving true problems or merely participating in practice exercises? The former stresses critical thinking and decision­ making skills whereas the latter requires only the application of previously learned procedures.

Problem solving is often broadly defined as "the ability to understand the environment, identify complex problems, review related information to develop, evaluate strategies and implement solutions to build the desired outcome" (Fissore, C. et al, 2021). True problem solving is the process of applying a method – not known in advance – to a problem that is subject to a specific set of conditions and that the problem solver has not seen before, in order to obtain a satisfactory solution.

Below you will find some basic principles for teaching problem solving and one model to implement in your classroom teaching.

Principles for teaching problem solving

  • Model a useful problem-solving method . Problem solving can be difficult and sometimes tedious. Show students how to be patient and persistent, and how to follow a structured method, such as Woods’ model described below. Articulate your method as you use it so students see the connections.
  • Teach within a specific context . Teach problem-solving skills in the context in which they will be used by students (e.g., mole fraction calculations in a chemistry course). Use real-life problems in explanations, examples, and exams. Do not teach problem solving as an independent, abstract skill.
  • Help students understand the problem . In order to solve problems, students need to define the end goal. This step is crucial to successful learning of problem-solving skills. If you succeed at helping students answer the questions “what?” and “why?”, finding the answer to “how?” will be easier.
  • Take enough time . When planning a lecture/tutorial, budget enough time for: understanding the problem and defining the goal (both individually and as a class); dealing with questions from you and your students; making, finding, and fixing mistakes; and solving entire problems in a single session.
  • Ask questions and make suggestions . Ask students to predict “what would happen if …” or explain why something happened. This will help them to develop analytical and deductive thinking skills. Also, ask questions and make suggestions about strategies to encourage students to reflect on the problem-solving strategies that they use.
  • Link errors to misconceptions . Use errors as evidence of misconceptions, not carelessness or random guessing. Make an effort to isolate the misconception and correct it, then teach students to do this by themselves. We can all learn from mistakes.

Woods’ problem-solving model

Define the problem.

  • The system . Have students identify the system under study (e.g., a metal bridge subject to certain forces) by interpreting the information provided in the problem statement. Drawing a diagram is a great way to do this.
  • Known(s) and concepts . List what is known about the problem, and identify the knowledge needed to understand (and eventually) solve it.
  • Unknown(s) . Once you have a list of knowns, identifying the unknown(s) becomes simpler. One unknown is generally the answer to the problem, but there may be other unknowns. Be sure that students understand what they are expected to find.
  • Units and symbols . One key aspect in problem solving is teaching students how to select, interpret, and use units and symbols. Emphasize the use of units whenever applicable. Develop a habit of using appropriate units and symbols yourself at all times.
  • Constraints . All problems have some stated or implied constraints. Teach students to look for the words "only", "must", "neglect", or "assume" to help identify the constraints.
  • Criteria for success . Help students consider, from the beginning, what a logical type of answer would be. What characteristics will it possess? For example, a quantitative problem will require an answer in some form of numerical units (e.g., $/kg product, square cm, etc.) while an optimization problem requires an answer in the form of either a numerical maximum or minimum.

Think about it

  • “Let it simmer”.  Use this stage to ponder the problem. Ideally, students will develop a mental image of the problem at hand during this stage.
  • Identify specific pieces of knowledge . Students need to determine by themselves the required background knowledge from illustrations, examples and problems covered in the course.
  • Collect information . Encourage students to collect pertinent information such as conversion factors, constants, and tables needed to solve the problem.

Plan a solution

  • Consider possible strategies . Often, the type of solution will be determined by the type of problem. Some common problem-solving strategies are: compute; simplify; use an equation; make a model, diagram, table, or chart; or work backwards.
  • Choose the best strategy . Help students to choose the best strategy by reminding them again what they are required to find or calculate.

Carry out the plan

  • Be patient . Most problems are not solved quickly or on the first attempt. In other cases, executing the solution may be the easiest step.
  • Be persistent . If a plan does not work immediately, do not let students get discouraged. Encourage them to try a different strategy and keep trying.

Encourage students to reflect. Once a solution has been reached, students should ask themselves the following questions:

  • Does the answer make sense?
  • Does it fit with the criteria established in step 1?
  • Did I answer the question(s)?
  • What did I learn by doing this?
  • Could I have done the problem another way?

If you would like support applying these tips to your own teaching, CTE staff members are here to help.  View the  CTE Support  page to find the most relevant staff member to contact. 

  • Fissore, C., Marchisio, M., Roman, F., & Sacchet, M. (2021). Development of problem solving skills with Maple in higher education. In: Corless, R.M., Gerhard, J., Kotsireas, I.S. (eds) Maple in Mathematics Education and Research. MC 2020. Communications in Computer and Information Science, vol 1414. Springer, Cham. https://doi.org/10.1007/978-3-030-81698-8_15
  • Foshay, R., & Kirkley, J. (1998). Principles for Teaching Problem Solving. TRO Learning Inc., Edina MN.  (PDF) Principles for Teaching Problem Solving (researchgate.net)
  • Hayes, J.R. (1989). The Complete Problem Solver. 2nd Edition. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Woods, D.R., Wright, J.D., Hoffman, T.W., Swartman, R.K., Doig, I.D. (1975). Teaching Problem solving Skills.
  • Engineering Education. Vol 1, No. 1. p. 238. Washington, DC: The American Society for Engineering Education.

teaching tips

Catalog search

Teaching tip categories.

  • Assessment and feedback
  • Blended Learning and Educational Technologies
  • Career Development
  • Course Design
  • Course Implementation
  • Inclusive Teaching and Learning
  • Learning activities
  • Support for Student Learning
  • Support for TAs
  • Learning activities ,

Teaching problem solving: Let students get ‘stuck’ and ‘unstuck’

Subscribe to the center for universal education bulletin, kate mills and km kate mills literacy interventionist - red bank primary school helyn kim helyn kim former brookings expert.

October 31, 2017

This is the second in a six-part  blog series  on  teaching 21st century skills , including  problem solving ,  metacognition , critical thinking , and collaboration , in classrooms.

In the real world, students encounter problems that are complex, not well defined, and lack a clear solution and approach. They need to be able to identify and apply different strategies to solve these problems. However, problem solving skills do not necessarily develop naturally; they need to be explicitly taught in a way that can be transferred across multiple settings and contexts.

Here’s what Kate Mills, who taught 4 th grade for 10 years at Knollwood School in New Jersey and is now a Literacy Interventionist at Red Bank Primary School, has to say about creating a classroom culture of problem solvers:

Helping my students grow to be people who will be successful outside of the classroom is equally as important as teaching the curriculum. From the first day of school, I intentionally choose language and activities that help to create a classroom culture of problem solvers. I want to produce students who are able to think about achieving a particular goal and manage their mental processes . This is known as metacognition , and research shows that metacognitive skills help students become better problem solvers.

I begin by “normalizing trouble” in the classroom. Peter H. Johnston teaches the importance of normalizing struggle , of naming it, acknowledging it, and calling it what it is: a sign that we’re growing. The goal is for the students to accept challenge and failure as a chance to grow and do better.

I look for every chance to share problems and highlight how the students— not the teachers— worked through those problems. There is, of course, coaching along the way. For example, a science class that is arguing over whose turn it is to build a vehicle will most likely need a teacher to help them find a way to the balance the work in an equitable way. Afterwards, I make it a point to turn it back to the class and say, “Do you see how you …” By naming what it is they did to solve the problem , students can be more independent and productive as they apply and adapt their thinking when engaging in future complex tasks.

After a few weeks, most of the class understands that the teachers aren’t there to solve problems for the students, but to support them in solving the problems themselves. With that important part of our classroom culture established, we can move to focusing on the strategies that students might need.

Here’s one way I do this in the classroom:

I show the broken escalator video to the class. Since my students are fourth graders, they think it’s hilarious and immediately start exclaiming, “Just get off! Walk!”

When the video is over, I say, “Many of us, probably all of us, are like the man in the video yelling for help when we get stuck. When we get stuck, we stop and immediately say ‘Help!’ instead of embracing the challenge and trying new ways to work through it.” I often introduce this lesson during math class, but it can apply to any area of our lives, and I can refer to the experience and conversation we had during any part of our day.

Research shows that just because students know the strategies does not mean they will engage in the appropriate strategies. Therefore, I try to provide opportunities where students can explicitly practice learning how, when, and why to use which strategies effectively  so that they can become self-directed learners.

For example, I give students a math problem that will make many of them feel “stuck”. I will say, “Your job is to get yourselves stuck—or to allow yourselves to get stuck on this problem—and then work through it, being mindful of how you’re getting yourselves unstuck.” As students work, I check-in to help them name their process: “How did you get yourself unstuck?” or “What was your first step? What are you doing now? What might you try next?” As students talk about their process, I’ll add to a list of strategies that students are using and, if they are struggling, help students name a specific process. For instance, if a student says he wrote the information from the math problem down and points to a chart, I will say: “Oh that’s interesting. You pulled the important information from the problem out and organized it into a chart.” In this way, I am giving him the language to match what he did, so that he now has a strategy he could use in other times of struggle.

The charts grow with us over time and are something that we refer to when students are stuck or struggling. They become a resource for students and a way for them to talk about their process when they are reflecting on and monitoring what did or did not work.

For me, as a teacher, it is important that I create a classroom environment in which students are problem solvers. This helps tie struggles to strategies so that the students will not only see value in working harder but in working smarter by trying new and different strategies and revising their process. In doing so, they will more successful the next time around.

Related Content

Esther Care, Helyn Kim, Alvin Vista

October 17, 2017

David Owen, Alvin Vista

November 15, 2017

Loren Clarke, Esther Care

December 5, 2017

Global Education K-12 Education

Global Economy and Development

Center for Universal Education

Lydia Wilbard

August 29, 2024

Zachary Billot, Annie Vong, Nicole Dias Del Valle, Emily Markovich Morris

August 26, 2024

Brian A. Jacob, Cristina Stanojevich

problem solving as a teaching and learning strategy

Problem based learning: a teacher's guide

December 10, 2021

Find out how teachers use problem-based learning models to improve engagement and drive attainment.

Main, P (2021, December 10). Problem based learning: a teacher's guide. Retrieved from https://www.structural-learning.com/post/problem-based-learning-a-teachers-guide

What is problem-based learning?

Problem-based learning (PBL) is a style of teaching that encourages students to become the drivers of their learning process . Problem-based learning involves complex learning issues from real-world problems and makes them the classroom's topic of discussion ; encouraging students to understand concepts through problem-solving skills rather than simply learning facts. When schools find time in the curriculum for this style of teaching it offers students an authentic vehicle for the integration of knowledge .

Embracing this pedagogical approach enables schools to balance subject knowledge acquisition with a skills agenda . Often used in medical education, this approach has equal significance in mainstream education where pupils can apply their knowledge to real-life problems. 

PBL is not only helpful in learning course content , but it can also promote the development of problem-solving abilities , critical thinking skills , and communication skills while providing opportunities to work in groups , find and analyse research materials , and take part in life-long learning .

PBL is a student-centred teaching method in which students understand a topic by working in groups. They work out an open-ended problem , which drives the motivation to learn. These sorts of theories of teaching do require schools to invest time and resources into supporting self-directed learning. Not all curriculum knowledge is best acquired through this process, rote learning still has its place in certain situations. In this article, we will look at how we can equip our students to take more ownership of the learning process and utilise more sophisticated ways for the integration of knowledge .

Philosophical Underpinnings of PBL

Problem-Based Learning (PBL), with its roots in the philosophies of John Dewey, Maria Montessori, and Jerome Bruner, aligns closely with the social constructionist view of learning. This approach positions learners as active participants in the construction of knowledge, contrasting with traditional models of instruction where learners are seen as passive recipients of information.

Dewey, a seminal figure in progressive education, advocated for active learning and real-world problem-solving, asserting that learning is grounded in experience and interaction. In PBL, learners tackle complex, real-world problems, which mirrors Dewey's belief in the interconnectedness of education and practical life.

Montessori also endorsed learner-centric, self-directed learning, emphasizing the child's potential to construct their own learning experiences. This parallels with PBL’s emphasis on self-directed learning, where students take ownership of their learning process.

Jerome Bruner’s theories underscored the idea of learning as an active, social process. His concept of a 'spiral curriculum' – where learning is revisited in increasing complexity – can be seen reflected in the iterative problem-solving process in PBL.

Webb’s Depth of Knowledge (DOK) framework aligns with PBL as it encourages higher-order cognitive skills. The complex tasks in PBL often demand analytical and evaluative skills (Webb's DOK levels 3 and 4) as students engage with the problem, devise a solution, and reflect on their work.

The effectiveness of PBL is supported by psychological theories like the information processing theory, which highlights the role of active engagement in enhancing memory and recall. A study by Strobel and Van Barneveld (2009) found that PBL students show improved retention of knowledge, possibly due to the deep cognitive processing involved.

As cognitive scientist Daniel Willingham aptly puts it, "Memory is the residue of thought." PBL encourages learners to think critically and deeply, enhancing both learning and retention.

Here's a quick overview:

  • John Dewey : Emphasized learning through experience and the importance of problem-solving.
  • Maria Montessori : Advocated for child-centered, self-directed learning.
  • Jerome Bruner : Underlined learning as a social process and proposed the spiral curriculum.
  • Webb’s DOK : Supports PBL's encouragement of higher-order thinking skills.
  • Information Processing Theory : Reinforces the notion that active engagement in PBL enhances memory and recall.

This deep-rooted philosophical and psychological framework strengthens the validity of the problem-based learning approach, confirming its beneficial role in promoting valuable cognitive skills and fostering positive student learning outcomes.

Problem based learning cycle

What are the characteristics of problem-based learning?

Adding a little creativity can change a topic into a problem-based learning activity. The following are some of the characteristics of a good PBL model:

  • The problem encourages students to search for a deeper understanding of content knowledge;
  • Students are responsible for their learning. PBL has a student-centred learning approach . Students' motivation increases when responsibility for the process and solution to the problem rests with the learner;
  • The problem motivates pupils to gain desirable learning skills and to defend well-informed decisions ;
  • The problem connects the content learning goals with the previous knowledge. PBL allows students to access, integrate and study information from multiple disciplines that might relate to understanding and resolving a specific problem—just as persons in the real world recollect and use the application of knowledge that they have gained from diverse sources in their life.
  • In a multistage project, the first stage of the problem must be engaging and open-ended to make students interested in the problem. In the real world, problems are poorly-structured. Research suggests that well-structured problems make students less invested and less motivated in the development of the solution. The problem simulations used in problem-based contextual learning are less structured to enable students to make a free inquiry.

Frameworks for problem-based learning

  • In a group project, the problem must have some level of complexity that motivates students towards knowledge acquisition and to work together for finding the solution. PBL involves collaboration between learners. In professional life, most people will find themselves in employment where they would work productively and share information with others. PBL leads to the development of such essential skills . In a PBL session, the teacher would ask questions to make sure that knowledge has been shared between pupils;
  • At the end of each problem or PBL, self and peer assessments are performed. The main purpose of assessments is to sharpen a variety of metacognitive processing skills and to reinforce self-reflective learning.
  • Student assessments would evaluate student progress towards the objectives of problem-based learning. The learning goals of PBL are both process-based and knowledge-based. Students must be assessed on both these dimensions to ensure that they are prospering as intended from the PBL approach. Students must be able to identify and articulate what they understood and what they learned.

Problem based learning tools

Why is Problem-based learning a significant skill?

Using Problem-Based Learning across a school promotes critical competence, inquiry , and knowledge application in social, behavioural and biological sciences. Practice-based learning holds a strong track record of successful learning outcomes in higher education settings such as graduates of Medical Schools.

Educational models using PBL can improve learning outcomes by teaching students how to implement theory into practice and build problem-solving skills. For example, within the field of health sciences education, PBL makes the learning process for nurses and medical students self-centred and promotes their teamwork and leadership skills. Within primary and secondary education settings, this model of teaching, with the right sort of collaborative tools , can advance the wider skills development valued in society.

At Structural Learning, we have been developing a self-assessment tool designed to monitor the progress of children. Utilising these types of teaching theories curriculum wide can help a school develop the learning behaviours our students will need in the workplace.

Curriculum wide collaborative tools include Writers Block and the Universal Thinking Framework . Along with graphic organisers, these tools enable children to collaborate and entertain different perspectives that they might not otherwise see. Putting learning in action by using the block building methodology enables children to reach their learning goals by experimenting and iterating. 

Scaffolding problem based learning with classroom tools

How is problem-based learning different from inquiry-based learning?

The major difference between inquiry-based learning and PBL relates to the role of the teacher . In the case of inquiry-based learning, the teacher is both a provider of classroom knowledge and a facilitator of student learning (expecting/encouraging higher-order thinking). On the other hand, PBL is a deep learning approach, in which the teacher is the supporter of the learning process and expects students to have clear thinking, but the teacher is not the provider of classroom knowledge about the problem—the responsibility of providing information belongs to the learners themselves.

As well as being used systematically in medical education, this approach has significant implications for integrating learning skills into mainstream classrooms .

Using a critical thinking disposition inventory, schools can monitor the wider progress of their students as they apply their learning skills across the traditional curriculum. Authentic problems call students to apply their critical thinking abilities in new and purposeful ways. As students explain their ideas to one another, they develop communication skills that might not otherwise be nurtured.

Depending on the curriculum being delivered by a school, there may well be an emphasis on building critical thinking abilities in the classroom. Within the International Baccalaureate programs, these life-long skills are often cited in the IB learner profile . Critical thinking dispositions are highly valued in the workplace and this pedagogical approach can be used to harness these essential 21st-century skills.

Traditional vs problem based learning

What are the Benefits of Problem-Based Learning?

Student-led Problem-Based Learning is one of the most useful ways to make students drivers of their learning experience. It makes students creative, innovative, logical and open-minded. The educational practice of Problem-Based Learning also provides opportunities for self-directed and collaborative learning with others in an active learning and hands-on process. Below are the most significant benefits of problem-based learning processes:

  • Self-learning: As a self-directed learning method, problem-based learning encourages children to take responsibility and initiative for their learning processes . As children use creativity and research, they develop skills that will help them in their adulthood.
  • Engaging : Students don't just listen to the teacher, sit back and take notes. Problem-based learning processes encourages students to take part in learning activities, use learning resources , stay active , think outside the box and apply critical thinking skills to solve problems.
  • Teamwork : Most of the problem-based learning issues involve students collaborative learning to find a solution. The educational practice of PBL builds interpersonal skills, listening and communication skills and improves the skills of collaboration and compromise.
  • Intrinsic Rewards: In most problem-based learning projects, the reward is much bigger than good grades. Students gain the pride and satisfaction of finding an innovative solution, solving a riddle, or creating a tangible product.
  • Transferable Skills: The acquisition of knowledge through problem-based learning strategies don't just help learners in one class or a single subject area. Students can apply these skills to a plethora of subject matter as well as in real life.
  • Multiple Learning Opportunities : A PBL model offers an open-ended problem-based acquisition of knowledge, which presents a real-world problem and asks learners to come up with well-constructed responses. Students can use multiple sources such as they can access online resources, using their prior knowledge, and asking momentous questions to brainstorm and come up with solid learning outcomes. Unlike traditional approaches , there might be more than a single right way to do something, but this process motivates learners to explore potential solutions whilst staying active.

Solving authentic problems using problem based learning

Embracing problem-based learning

Problem-based learning can be seen as a deep learning approach and when implemented effectively as part of a broad and balanced curriculum , a successful teaching strategy in education. PBL has a solid epistemological and philosophical foundation and a strong track record of success in multiple areas of study. Learners must experience problem-based learning methods and engage in positive solution-finding activities. PBL models allow learners to gain knowledge through real-world problems, which offers more strength to their understanding and helps them find the connection between classroom learning and the real world at large.

As they solve problems, students can evolve as individuals and team-mates. One word of caution, not all classroom tasks will lend themselves to this learning theory. Take spellings , for example, this is usually delivered with low-stakes quizzing through a practice-based learning model. PBL allows students to apply their knowledge creatively but they need to have a certain level of background knowledge to do this, rote learning might still have its place after all.

Key Concepts and considerations for school leaders

1. Problem Based Learning (PBL)

Problem-based learning (PBL) is an educational method that involves active student participation in solving authentic problems. Students are given a task or question that they must answer using their prior knowledge and resources. They then collaborate with each other to come up with solutions to the problem. This collaborative effort leads to deeper learning than traditional lectures or classroom instruction .

Key question: Inside a traditional curriculum , what opportunities across subject areas do you immediately see?

2. Deep Learning

Deep learning is a term used to describe the ability to learn concepts deeply. For example, if you were asked to memorize a list of numbers, you would probably remember the first five numbers easily, but the last number would be difficult to recall. However, if you were taught to understand the concept behind the numbers, you would be able to remember the last number too.

Key question: How will you make sure that students use a full range of learning styles and learning skills ?

3. Epistemology

Epistemology is the branch of philosophy that deals with the nature of knowledge . It examines the conditions under which something counts as knowledge.

Key question:  As well as focusing on critical thinking dispositions, what subject knowledge should the students understand?

4. Philosophy

Philosophy is the study of general truths about human life. Philosophers examine questions such as “What makes us happy?”, “How should we live our lives?”, and “Why does anything exist?”

Key question: Are there any opportunities for embracing philosophical enquiry into the project to develop critical thinking abilities ?

5. Curriculum

A curriculum is a set of courses designed to teach specific subjects. These courses may include mathematics , science, social studies, language arts, etc.

Key question: How will subject leaders ensure that the integrity of the curriculum is maintained?

6. Broad and Balanced Curriculum

Broad and balanced curricula are those that cover a wide range of topics. Some examples of these types of curriculums include AP Biology, AP Chemistry, AP English Language, AP Physics 1, AP Psychology , AP Spanish Literature, AP Statistics, AP US History, AP World History, IB Diploma Programme, IB Primary Years Program, IB Middle Years Program, IB Diploma Programme .

Key question: Are the teachers who have identified opportunities for a problem-based curriculum?

7. Successful Teaching Strategy

Successful teaching strategies involve effective communication techniques, clear objectives, and appropriate assessments. Teachers must ensure that their lessons are well-planned and organized. They must also provide opportunities for students to interact with one another and share information.

Key question: What pedagogical approaches and teaching strategies will you use?

8. Positive Solution Finding

Positive solution finding is a type of problem-solving where students actively seek out answers rather than passively accept what others tell them.

Key question: How will you ensure your problem-based curriculum is met with a positive mindset from students and teachers?

9. Real World Application

Real-world application refers to applying what students have learned in class to situations that occur in everyday life.

Key question: Within your local school community , are there any opportunities to apply knowledge and skills to real-life problems?

10. Creativity

Creativity is the ability to think of ideas that no one else has thought of yet. Creative thinking requires divergent thinking, which means thinking in different directions.

Key question: What teaching techniques will you use to enable children to generate their own ideas ?

11. Teamwork

Teamwork is the act of working together towards a common goal. Teams often consist of two or more people who work together to achieve a shared objective.

Key question: What opportunities are there to engage students in dialogic teaching methods where they talk their way through the problem?

12. Knowledge Transfer

Knowledge transfer occurs when teachers use their expertise to help students develop skills and abilities .

Key question: Can teachers be able to track the success of the project using improvement scores?

13. Active Learning

Active learning is any form of instruction that engages students in the learning process. Examples of active learning include group discussions, role-playing, debates, presentations, and simulations .

Key question: Will there be an emphasis on learning to learn and developing independent learning skills ?

14. Student Engagement

Student engagement is the degree to which students feel motivated to participate in academic activities.

Key question: Are there any tools available to monitor student engagement during the problem-based curriculum ?

problem solving as a teaching and learning strategy

Enhance Learner Outcomes Across Your School

Download an Overview of our Support and Resources

We'll send it over now.

Please fill in the details so we can send over the resources.

What type of school are you?

We'll get you the right resource

Is your school involved in any staff development projects?

Are your colleagues running any research projects or courses?

Do you have any immediate school priorities?

Please check the ones that apply.

problem solving as a teaching and learning strategy

Download your resource

Thanks for taking the time to complete this form, submit the form to get the tool.

Classroom Practice

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 11 January 2023

The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature

  • Enwei Xu   ORCID: orcid.org/0000-0001-6424-8169 1 ,
  • Wei Wang 1 &
  • Qingxia Wang 1  

Humanities and Social Sciences Communications volume  10 , Article number:  16 ( 2023 ) Cite this article

19k Accesses

21 Citations

3 Altmetric

Metrics details

  • Science, technology and society

Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field of education as well as a key competence for learners in the 21st century. However, the effectiveness of collaborative problem-solving in promoting students’ critical thinking remains uncertain. This current research presents the major findings of a meta-analysis of 36 pieces of the literature revealed in worldwide educational periodicals during the 21st century to identify the effectiveness of collaborative problem-solving in promoting students’ critical thinking and to determine, based on evidence, whether and to what extent collaborative problem solving can result in a rise or decrease in critical thinking. The findings show that (1) collaborative problem solving is an effective teaching approach to foster students’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]); (2) in respect to the dimensions of critical thinking, collaborative problem solving can significantly and successfully enhance students’ attitudinal tendencies (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI[0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI[0.58, 0.82]); and (3) the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have an impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. On the basis of these results, recommendations are made for further study and instruction to better support students’ critical thinking in the context of collaborative problem-solving.

Similar content being viewed by others

problem solving as a teaching and learning strategy

A meta-analysis of the effects of design thinking on student learning

problem solving as a teaching and learning strategy

Fostering twenty-first century skills among primary school students through math project-based learning

problem solving as a teaching and learning strategy

A meta-analysis to gauge the impact of pedagogies employed in mixed-ability high school biology classrooms

Introduction.

Although critical thinking has a long history in research, the concept of critical thinking, which is regarded as an essential competence for learners in the 21st century, has recently attracted more attention from researchers and teaching practitioners (National Research Council, 2012 ). Critical thinking should be the core of curriculum reform based on key competencies in the field of education (Peng and Deng, 2017 ) because students with critical thinking can not only understand the meaning of knowledge but also effectively solve practical problems in real life even after knowledge is forgotten (Kek and Huijser, 2011 ). The definition of critical thinking is not universal (Ennis, 1989 ; Castle, 2009 ; Niu et al., 2013 ). In general, the definition of critical thinking is a self-aware and self-regulated thought process (Facione, 1990 ; Niu et al., 2013 ). It refers to the cognitive skills needed to interpret, analyze, synthesize, reason, and evaluate information as well as the attitudinal tendency to apply these abilities (Halpern, 2001 ). The view that critical thinking can be taught and learned through curriculum teaching has been widely supported by many researchers (e.g., Kuncel, 2011 ; Leng and Lu, 2020 ), leading to educators’ efforts to foster it among students. In the field of teaching practice, there are three types of courses for teaching critical thinking (Ennis, 1989 ). The first is an independent curriculum in which critical thinking is taught and cultivated without involving the knowledge of specific disciplines; the second is an integrated curriculum in which critical thinking is integrated into the teaching of other disciplines as a clear teaching goal; and the third is a mixed curriculum in which critical thinking is taught in parallel to the teaching of other disciplines for mixed teaching training. Furthermore, numerous measuring tools have been developed by researchers and educators to measure critical thinking in the context of teaching practice. These include standardized measurement tools, such as WGCTA, CCTST, CCTT, and CCTDI, which have been verified by repeated experiments and are considered effective and reliable by international scholars (Facione and Facione, 1992 ). In short, descriptions of critical thinking, including its two dimensions of attitudinal tendency and cognitive skills, different types of teaching courses, and standardized measurement tools provide a complex normative framework for understanding, teaching, and evaluating critical thinking.

Cultivating critical thinking in curriculum teaching can start with a problem, and one of the most popular critical thinking instructional approaches is problem-based learning (Liu et al., 2020 ). Duch et al. ( 2001 ) noted that problem-based learning in group collaboration is progressive active learning, which can improve students’ critical thinking and problem-solving skills. Collaborative problem-solving is the organic integration of collaborative learning and problem-based learning, which takes learners as the center of the learning process and uses problems with poor structure in real-world situations as the starting point for the learning process (Liang et al., 2017 ). Students learn the knowledge needed to solve problems in a collaborative group, reach a consensus on problems in the field, and form solutions through social cooperation methods, such as dialogue, interpretation, questioning, debate, negotiation, and reflection, thus promoting the development of learners’ domain knowledge and critical thinking (Cindy, 2004 ; Liang et al., 2017 ).

Collaborative problem-solving has been widely used in the teaching practice of critical thinking, and several studies have attempted to conduct a systematic review and meta-analysis of the empirical literature on critical thinking from various perspectives. However, little attention has been paid to the impact of collaborative problem-solving on critical thinking. Therefore, the best approach for developing and enhancing critical thinking throughout collaborative problem-solving is to examine how to implement critical thinking instruction; however, this issue is still unexplored, which means that many teachers are incapable of better instructing critical thinking (Leng and Lu, 2020 ; Niu et al., 2013 ). For example, Huber ( 2016 ) provided the meta-analysis findings of 71 publications on gaining critical thinking over various time frames in college with the aim of determining whether critical thinking was truly teachable. These authors found that learners significantly improve their critical thinking while in college and that critical thinking differs with factors such as teaching strategies, intervention duration, subject area, and teaching type. The usefulness of collaborative problem-solving in fostering students’ critical thinking, however, was not determined by this study, nor did it reveal whether there existed significant variations among the different elements. A meta-analysis of 31 pieces of educational literature was conducted by Liu et al. ( 2020 ) to assess the impact of problem-solving on college students’ critical thinking. These authors found that problem-solving could promote the development of critical thinking among college students and proposed establishing a reasonable group structure for problem-solving in a follow-up study to improve students’ critical thinking. Additionally, previous empirical studies have reached inconclusive and even contradictory conclusions about whether and to what extent collaborative problem-solving increases or decreases critical thinking levels. As an illustration, Yang et al. ( 2008 ) carried out an experiment on the integrated curriculum teaching of college students based on a web bulletin board with the goal of fostering participants’ critical thinking in the context of collaborative problem-solving. These authors’ research revealed that through sharing, debating, examining, and reflecting on various experiences and ideas, collaborative problem-solving can considerably enhance students’ critical thinking in real-life problem situations. In contrast, collaborative problem-solving had a positive impact on learners’ interaction and could improve learning interest and motivation but could not significantly improve students’ critical thinking when compared to traditional classroom teaching, according to research by Naber and Wyatt ( 2014 ) and Sendag and Odabasi ( 2009 ) on undergraduate and high school students, respectively.

The above studies show that there is inconsistency regarding the effectiveness of collaborative problem-solving in promoting students’ critical thinking. Therefore, it is essential to conduct a thorough and trustworthy review to detect and decide whether and to what degree collaborative problem-solving can result in a rise or decrease in critical thinking. Meta-analysis is a quantitative analysis approach that is utilized to examine quantitative data from various separate studies that are all focused on the same research topic. This approach characterizes the effectiveness of its impact by averaging the effect sizes of numerous qualitative studies in an effort to reduce the uncertainty brought on by independent research and produce more conclusive findings (Lipsey and Wilson, 2001 ).

This paper used a meta-analytic approach and carried out a meta-analysis to examine the effectiveness of collaborative problem-solving in promoting students’ critical thinking in order to make a contribution to both research and practice. The following research questions were addressed by this meta-analysis:

What is the overall effect size of collaborative problem-solving in promoting students’ critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills)?

How are the disparities between the study conclusions impacted by various moderating variables if the impacts of various experimental designs in the included studies are heterogeneous?

This research followed the strict procedures (e.g., database searching, identification, screening, eligibility, merging, duplicate removal, and analysis of included studies) of Cooper’s ( 2010 ) proposed meta-analysis approach for examining quantitative data from various separate studies that are all focused on the same research topic. The relevant empirical research that appeared in worldwide educational periodicals within the 21st century was subjected to this meta-analysis using Rev-Man 5.4. The consistency of the data extracted separately by two researchers was tested using Cohen’s kappa coefficient, and a publication bias test and a heterogeneity test were run on the sample data to ascertain the quality of this meta-analysis.

Data sources and search strategies

There were three stages to the data collection process for this meta-analysis, as shown in Fig. 1 , which shows the number of articles included and eliminated during the selection process based on the statement and study eligibility criteria.

figure 1

This flowchart shows the number of records identified, included and excluded in the article.

First, the databases used to systematically search for relevant articles were the journal papers of the Web of Science Core Collection and the Chinese Core source journal, as well as the Chinese Social Science Citation Index (CSSCI) source journal papers included in CNKI. These databases were selected because they are credible platforms that are sources of scholarly and peer-reviewed information with advanced search tools and contain literature relevant to the subject of our topic from reliable researchers and experts. The search string with the Boolean operator used in the Web of Science was “TS = (((“critical thinking” or “ct” and “pretest” or “posttest”) or (“critical thinking” or “ct” and “control group” or “quasi experiment” or “experiment”)) and (“collaboration” or “collaborative learning” or “CSCL”) and (“problem solving” or “problem-based learning” or “PBL”))”. The research area was “Education Educational Research”, and the search period was “January 1, 2000, to December 30, 2021”. A total of 412 papers were obtained. The search string with the Boolean operator used in the CNKI was “SU = (‘critical thinking’*‘collaboration’ + ‘critical thinking’*‘collaborative learning’ + ‘critical thinking’*‘CSCL’ + ‘critical thinking’*‘problem solving’ + ‘critical thinking’*‘problem-based learning’ + ‘critical thinking’*‘PBL’ + ‘critical thinking’*‘problem oriented’) AND FT = (‘experiment’ + ‘quasi experiment’ + ‘pretest’ + ‘posttest’ + ‘empirical study’)” (translated into Chinese when searching). A total of 56 studies were found throughout the search period of “January 2000 to December 2021”. From the databases, all duplicates and retractions were eliminated before exporting the references into Endnote, a program for managing bibliographic references. In all, 466 studies were found.

Second, the studies that matched the inclusion and exclusion criteria for the meta-analysis were chosen by two researchers after they had reviewed the abstracts and titles of the gathered articles, yielding a total of 126 studies.

Third, two researchers thoroughly reviewed each included article’s whole text in accordance with the inclusion and exclusion criteria. Meanwhile, a snowball search was performed using the references and citations of the included articles to ensure complete coverage of the articles. Ultimately, 36 articles were kept.

Two researchers worked together to carry out this entire process, and a consensus rate of almost 94.7% was reached after discussion and negotiation to clarify any emerging differences.

Eligibility criteria

Since not all the retrieved studies matched the criteria for this meta-analysis, eligibility criteria for both inclusion and exclusion were developed as follows:

The publication language of the included studies was limited to English and Chinese, and the full text could be obtained. Articles that did not meet the publication language and articles not published between 2000 and 2021 were excluded.

The research design of the included studies must be empirical and quantitative studies that can assess the effect of collaborative problem-solving on the development of critical thinking. Articles that could not identify the causal mechanisms by which collaborative problem-solving affects critical thinking, such as review articles and theoretical articles, were excluded.

The research method of the included studies must feature a randomized control experiment or a quasi-experiment, or a natural experiment, which have a higher degree of internal validity with strong experimental designs and can all plausibly provide evidence that critical thinking and collaborative problem-solving are causally related. Articles with non-experimental research methods, such as purely correlational or observational studies, were excluded.

The participants of the included studies were only students in school, including K-12 students and college students. Articles in which the participants were non-school students, such as social workers or adult learners, were excluded.

The research results of the included studies must mention definite signs that may be utilized to gauge critical thinking’s impact (e.g., sample size, mean value, or standard deviation). Articles that lacked specific measurement indicators for critical thinking and could not calculate the effect size were excluded.

Data coding design

In order to perform a meta-analysis, it is necessary to collect the most important information from the articles, codify that information’s properties, and convert descriptive data into quantitative data. Therefore, this study designed a data coding template (see Table 1 ). Ultimately, 16 coding fields were retained.

The designed data-coding template consisted of three pieces of information. Basic information about the papers was included in the descriptive information: the publishing year, author, serial number, and title of the paper.

The variable information for the experimental design had three variables: the independent variable (instruction method), the dependent variable (critical thinking), and the moderating variable (learning stage, teaching type, intervention duration, learning scaffold, group size, measuring tool, and subject area). Depending on the topic of this study, the intervention strategy, as the independent variable, was coded into collaborative and non-collaborative problem-solving. The dependent variable, critical thinking, was coded as a cognitive skill and an attitudinal tendency. And seven moderating variables were created by grouping and combining the experimental design variables discovered within the 36 studies (see Table 1 ), where learning stages were encoded as higher education, high school, middle school, and primary school or lower; teaching types were encoded as mixed courses, integrated courses, and independent courses; intervention durations were encoded as 0–1 weeks, 1–4 weeks, 4–12 weeks, and more than 12 weeks; group sizes were encoded as 2–3 persons, 4–6 persons, 7–10 persons, and more than 10 persons; learning scaffolds were encoded as teacher-supported learning scaffold, technique-supported learning scaffold, and resource-supported learning scaffold; measuring tools were encoded as standardized measurement tools (e.g., WGCTA, CCTT, CCTST, and CCTDI) and self-adapting measurement tools (e.g., modified or made by researchers); and subject areas were encoded according to the specific subjects used in the 36 included studies.

The data information contained three metrics for measuring critical thinking: sample size, average value, and standard deviation. It is vital to remember that studies with various experimental designs frequently adopt various formulas to determine the effect size. And this paper used Morris’ proposed standardized mean difference (SMD) calculation formula ( 2008 , p. 369; see Supplementary Table S3 ).

Procedure for extracting and coding data

According to the data coding template (see Table 1 ), the 36 papers’ information was retrieved by two researchers, who then entered them into Excel (see Supplementary Table S1 ). The results of each study were extracted separately in the data extraction procedure if an article contained numerous studies on critical thinking, or if a study assessed different critical thinking dimensions. For instance, Tiwari et al. ( 2010 ) used four time points, which were viewed as numerous different studies, to examine the outcomes of critical thinking, and Chen ( 2013 ) included the two outcome variables of attitudinal tendency and cognitive skills, which were regarded as two studies. After discussion and negotiation during data extraction, the two researchers’ consistency test coefficients were roughly 93.27%. Supplementary Table S2 details the key characteristics of the 36 included articles with 79 effect quantities, including descriptive information (e.g., the publishing year, author, serial number, and title of the paper), variable information (e.g., independent variables, dependent variables, and moderating variables), and data information (e.g., mean values, standard deviations, and sample size). Following that, testing for publication bias and heterogeneity was done on the sample data using the Rev-Man 5.4 software, and then the test results were used to conduct a meta-analysis.

Publication bias test

When the sample of studies included in a meta-analysis does not accurately reflect the general status of research on the relevant subject, publication bias is said to be exhibited in this research. The reliability and accuracy of the meta-analysis may be impacted by publication bias. Due to this, the meta-analysis needs to check the sample data for publication bias (Stewart et al., 2006 ). A popular method to check for publication bias is the funnel plot; and it is unlikely that there will be publishing bias when the data are equally dispersed on either side of the average effect size and targeted within the higher region. The data are equally dispersed within the higher portion of the efficient zone, consistent with the funnel plot connected with this analysis (see Fig. 2 ), indicating that publication bias is unlikely in this situation.

figure 2

This funnel plot shows the result of publication bias of 79 effect quantities across 36 studies.

Heterogeneity test

To select the appropriate effect models for the meta-analysis, one might use the results of a heterogeneity test on the data effect sizes. In a meta-analysis, it is common practice to gauge the degree of data heterogeneity using the I 2 value, and I 2  ≥ 50% is typically understood to denote medium-high heterogeneity, which calls for the adoption of a random effect model; if not, a fixed effect model ought to be applied (Lipsey and Wilson, 2001 ). The findings of the heterogeneity test in this paper (see Table 2 ) revealed that I 2 was 86% and displayed significant heterogeneity ( P  < 0.01). To ensure accuracy and reliability, the overall effect size ought to be calculated utilizing the random effect model.

The analysis of the overall effect size

This meta-analysis utilized a random effect model to examine 79 effect quantities from 36 studies after eliminating heterogeneity. In accordance with Cohen’s criterion (Cohen, 1992 ), it is abundantly clear from the analysis results, which are shown in the forest plot of the overall effect (see Fig. 3 ), that the cumulative impact size of cooperative problem-solving is 0.82, which is statistically significant ( z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]), and can encourage learners to practice critical thinking.

figure 3

This forest plot shows the analysis result of the overall effect size across 36 studies.

In addition, this study examined two distinct dimensions of critical thinking to better understand the precise contributions that collaborative problem-solving makes to the growth of critical thinking. The findings (see Table 3 ) indicate that collaborative problem-solving improves cognitive skills (ES = 0.70) and attitudinal tendency (ES = 1.17), with significant intergroup differences (chi 2  = 7.95, P  < 0.01). Although collaborative problem-solving improves both dimensions of critical thinking, it is essential to point out that the improvements in students’ attitudinal tendency are much more pronounced and have a significant comprehensive effect (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]), whereas gains in learners’ cognitive skill are slightly improved and are just above average. (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

The analysis of moderator effect size

The whole forest plot’s 79 effect quantities underwent a two-tailed test, which revealed significant heterogeneity ( I 2  = 86%, z  = 12.78, P  < 0.01), indicating differences between various effect sizes that may have been influenced by moderating factors other than sampling error. Therefore, exploring possible moderating factors that might produce considerable heterogeneity was done using subgroup analysis, such as the learning stage, learning scaffold, teaching type, group size, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, in order to further explore the key factors that influence critical thinking. The findings (see Table 4 ) indicate that various moderating factors have advantageous effects on critical thinking. In this situation, the subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), learning scaffold (chi 2  = 9.03, P  < 0.01), and teaching type (chi 2  = 7.20, P  < 0.05) are all significant moderators that can be applied to support the cultivation of critical thinking. However, since the learning stage and the measuring tools did not significantly differ among intergroup (chi 2  = 3.15, P  = 0.21 > 0.05, and chi 2  = 0.08, P  = 0.78 > 0.05), we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving. These are the precise outcomes, as follows:

Various learning stages influenced critical thinking positively, without significant intergroup differences (chi 2  = 3.15, P  = 0.21 > 0.05). High school was first on the list of effect sizes (ES = 1.36, P  < 0.01), then higher education (ES = 0.78, P  < 0.01), and middle school (ES = 0.73, P  < 0.01). These results show that, despite the learning stage’s beneficial influence on cultivating learners’ critical thinking, we are unable to explain why it is essential for cultivating critical thinking in the context of collaborative problem-solving.

Different teaching types had varying degrees of positive impact on critical thinking, with significant intergroup differences (chi 2  = 7.20, P  < 0.05). The effect size was ranked as follows: mixed courses (ES = 1.34, P  < 0.01), integrated courses (ES = 0.81, P  < 0.01), and independent courses (ES = 0.27, P  < 0.01). These results indicate that the most effective approach to cultivate critical thinking utilizing collaborative problem solving is through the teaching type of mixed courses.

Various intervention durations significantly improved critical thinking, and there were significant intergroup differences (chi 2  = 12.18, P  < 0.01). The effect sizes related to this variable showed a tendency to increase with longer intervention durations. The improvement in critical thinking reached a significant level (ES = 0.85, P  < 0.01) after more than 12 weeks of training. These findings indicate that the intervention duration and critical thinking’s impact are positively correlated, with a longer intervention duration having a greater effect.

Different learning scaffolds influenced critical thinking positively, with significant intergroup differences (chi 2  = 9.03, P  < 0.01). The resource-supported learning scaffold (ES = 0.69, P  < 0.01) acquired a medium-to-higher level of impact, the technique-supported learning scaffold (ES = 0.63, P  < 0.01) also attained a medium-to-higher level of impact, and the teacher-supported learning scaffold (ES = 0.92, P  < 0.01) displayed a high level of significant impact. These results show that the learning scaffold with teacher support has the greatest impact on cultivating critical thinking.

Various group sizes influenced critical thinking positively, and the intergroup differences were statistically significant (chi 2  = 8.77, P  < 0.05). Critical thinking showed a general declining trend with increasing group size. The overall effect size of 2–3 people in this situation was the biggest (ES = 0.99, P  < 0.01), and when the group size was greater than 7 people, the improvement in critical thinking was at the lower-middle level (ES < 0.5, P  < 0.01). These results show that the impact on critical thinking is positively connected with group size, and as group size grows, so does the overall impact.

Various measuring tools influenced critical thinking positively, with significant intergroup differences (chi 2  = 0.08, P  = 0.78 > 0.05). In this situation, the self-adapting measurement tools obtained an upper-medium level of effect (ES = 0.78), whereas the complete effect size of the standardized measurement tools was the largest, achieving a significant level of effect (ES = 0.84, P  < 0.01). These results show that, despite the beneficial influence of the measuring tool on cultivating critical thinking, we are unable to explain why it is crucial in fostering the growth of critical thinking by utilizing the approach of collaborative problem-solving.

Different subject areas had a greater impact on critical thinking, and the intergroup differences were statistically significant (chi 2  = 13.36, P  < 0.05). Mathematics had the greatest overall impact, achieving a significant level of effect (ES = 1.68, P  < 0.01), followed by science (ES = 1.25, P  < 0.01) and medical science (ES = 0.87, P  < 0.01), both of which also achieved a significant level of effect. Programming technology was the least effective (ES = 0.39, P  < 0.01), only having a medium-low degree of effect compared to education (ES = 0.72, P  < 0.01) and other fields (such as language, art, and social sciences) (ES = 0.58, P  < 0.01). These results suggest that scientific fields (e.g., mathematics, science) may be the most effective subject areas for cultivating critical thinking utilizing the approach of collaborative problem-solving.

The effectiveness of collaborative problem solving with regard to teaching critical thinking

According to this meta-analysis, using collaborative problem-solving as an intervention strategy in critical thinking teaching has a considerable amount of impact on cultivating learners’ critical thinking as a whole and has a favorable promotional effect on the two dimensions of critical thinking. According to certain studies, collaborative problem solving, the most frequently used critical thinking teaching strategy in curriculum instruction can considerably enhance students’ critical thinking (e.g., Liang et al., 2017 ; Liu et al., 2020 ; Cindy, 2004 ). This meta-analysis provides convergent data support for the above research views. Thus, the findings of this meta-analysis not only effectively address the first research query regarding the overall effect of cultivating critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills) utilizing the approach of collaborative problem-solving, but also enhance our confidence in cultivating critical thinking by using collaborative problem-solving intervention approach in the context of classroom teaching.

Furthermore, the associated improvements in attitudinal tendency are much stronger, but the corresponding improvements in cognitive skill are only marginally better. According to certain studies, cognitive skill differs from the attitudinal tendency in classroom instruction; the cultivation and development of the former as a key ability is a process of gradual accumulation, while the latter as an attitude is affected by the context of the teaching situation (e.g., a novel and exciting teaching approach, challenging and rewarding tasks) (Halpern, 2001 ; Wei and Hong, 2022 ). Collaborative problem-solving as a teaching approach is exciting and interesting, as well as rewarding and challenging; because it takes the learners as the focus and examines problems with poor structure in real situations, and it can inspire students to fully realize their potential for problem-solving, which will significantly improve their attitudinal tendency toward solving problems (Liu et al., 2020 ). Similar to how collaborative problem-solving influences attitudinal tendency, attitudinal tendency impacts cognitive skill when attempting to solve a problem (Liu et al., 2020 ; Zhang et al., 2022 ), and stronger attitudinal tendencies are associated with improved learning achievement and cognitive ability in students (Sison, 2008 ; Zhang et al., 2022 ). It can be seen that the two specific dimensions of critical thinking as well as critical thinking as a whole are affected by collaborative problem-solving, and this study illuminates the nuanced links between cognitive skills and attitudinal tendencies with regard to these two dimensions of critical thinking. To fully develop students’ capacity for critical thinking, future empirical research should pay closer attention to cognitive skills.

The moderating effects of collaborative problem solving with regard to teaching critical thinking

In order to further explore the key factors that influence critical thinking, exploring possible moderating effects that might produce considerable heterogeneity was done using subgroup analysis. The findings show that the moderating factors, such as the teaching type, learning stage, group size, learning scaffold, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, could all support the cultivation of collaborative problem-solving in critical thinking. Among them, the effect size differences between the learning stage and measuring tool are not significant, which does not explain why these two factors are crucial in supporting the cultivation of critical thinking utilizing the approach of collaborative problem-solving.

In terms of the learning stage, various learning stages influenced critical thinking positively without significant intergroup differences, indicating that we are unable to explain why it is crucial in fostering the growth of critical thinking.

Although high education accounts for 70.89% of all empirical studies performed by researchers, high school may be the appropriate learning stage to foster students’ critical thinking by utilizing the approach of collaborative problem-solving since it has the largest overall effect size. This phenomenon may be related to student’s cognitive development, which needs to be further studied in follow-up research.

With regard to teaching type, mixed course teaching may be the best teaching method to cultivate students’ critical thinking. Relevant studies have shown that in the actual teaching process if students are trained in thinking methods alone, the methods they learn are isolated and divorced from subject knowledge, which is not conducive to their transfer of thinking methods; therefore, if students’ thinking is trained only in subject teaching without systematic method training, it is challenging to apply to real-world circumstances (Ruggiero, 2012 ; Hu and Liu, 2015 ). Teaching critical thinking as mixed course teaching in parallel to other subject teachings can achieve the best effect on learners’ critical thinking, and explicit critical thinking instruction is more effective than less explicit critical thinking instruction (Bensley and Spero, 2014 ).

In terms of the intervention duration, with longer intervention times, the overall effect size shows an upward tendency. Thus, the intervention duration and critical thinking’s impact are positively correlated. Critical thinking, as a key competency for students in the 21st century, is difficult to get a meaningful improvement in a brief intervention duration. Instead, it could be developed over a lengthy period of time through consistent teaching and the progressive accumulation of knowledge (Halpern, 2001 ; Hu and Liu, 2015 ). Therefore, future empirical studies ought to take these restrictions into account throughout a longer period of critical thinking instruction.

With regard to group size, a group size of 2–3 persons has the highest effect size, and the comprehensive effect size decreases with increasing group size in general. This outcome is in line with some research findings; as an example, a group composed of two to four members is most appropriate for collaborative learning (Schellens and Valcke, 2006 ). However, the meta-analysis results also indicate that once the group size exceeds 7 people, small groups cannot produce better interaction and performance than large groups. This may be because the learning scaffolds of technique support, resource support, and teacher support improve the frequency and effectiveness of interaction among group members, and a collaborative group with more members may increase the diversity of views, which is helpful to cultivate critical thinking utilizing the approach of collaborative problem-solving.

With regard to the learning scaffold, the three different kinds of learning scaffolds can all enhance critical thinking. Among them, the teacher-supported learning scaffold has the largest overall effect size, demonstrating the interdependence of effective learning scaffolds and collaborative problem-solving. This outcome is in line with some research findings; as an example, a successful strategy is to encourage learners to collaborate, come up with solutions, and develop critical thinking skills by using learning scaffolds (Reiser, 2004 ; Xu et al., 2022 ); learning scaffolds can lower task complexity and unpleasant feelings while also enticing students to engage in learning activities (Wood et al., 2006 ); learning scaffolds are designed to assist students in using learning approaches more successfully to adapt the collaborative problem-solving process, and the teacher-supported learning scaffolds have the greatest influence on critical thinking in this process because they are more targeted, informative, and timely (Xu et al., 2022 ).

With respect to the measuring tool, despite the fact that standardized measurement tools (such as the WGCTA, CCTT, and CCTST) have been acknowledged as trustworthy and effective by worldwide experts, only 54.43% of the research included in this meta-analysis adopted them for assessment, and the results indicated no intergroup differences. These results suggest that not all teaching circumstances are appropriate for measuring critical thinking using standardized measurement tools. “The measuring tools for measuring thinking ability have limits in assessing learners in educational situations and should be adapted appropriately to accurately assess the changes in learners’ critical thinking.”, according to Simpson and Courtney ( 2002 , p. 91). As a result, in order to more fully and precisely gauge how learners’ critical thinking has evolved, we must properly modify standardized measuring tools based on collaborative problem-solving learning contexts.

With regard to the subject area, the comprehensive effect size of science departments (e.g., mathematics, science, medical science) is larger than that of language arts and social sciences. Some recent international education reforms have noted that critical thinking is a basic part of scientific literacy. Students with scientific literacy can prove the rationality of their judgment according to accurate evidence and reasonable standards when they face challenges or poorly structured problems (Kyndt et al., 2013 ), which makes critical thinking crucial for developing scientific understanding and applying this understanding to practical problem solving for problems related to science, technology, and society (Yore et al., 2007 ).

Suggestions for critical thinking teaching

Other than those stated in the discussion above, the following suggestions are offered for critical thinking instruction utilizing the approach of collaborative problem-solving.

First, teachers should put a special emphasis on the two core elements, which are collaboration and problem-solving, to design real problems based on collaborative situations. This meta-analysis provides evidence to support the view that collaborative problem-solving has a strong synergistic effect on promoting students’ critical thinking. Asking questions about real situations and allowing learners to take part in critical discussions on real problems during class instruction are key ways to teach critical thinking rather than simply reading speculative articles without practice (Mulnix, 2012 ). Furthermore, the improvement of students’ critical thinking is realized through cognitive conflict with other learners in the problem situation (Yang et al., 2008 ). Consequently, it is essential for teachers to put a special emphasis on the two core elements, which are collaboration and problem-solving, and design real problems and encourage students to discuss, negotiate, and argue based on collaborative problem-solving situations.

Second, teachers should design and implement mixed courses to cultivate learners’ critical thinking, utilizing the approach of collaborative problem-solving. Critical thinking can be taught through curriculum instruction (Kuncel, 2011 ; Leng and Lu, 2020 ), with the goal of cultivating learners’ critical thinking for flexible transfer and application in real problem-solving situations. This meta-analysis shows that mixed course teaching has a highly substantial impact on the cultivation and promotion of learners’ critical thinking. Therefore, teachers should design and implement mixed course teaching with real collaborative problem-solving situations in combination with the knowledge content of specific disciplines in conventional teaching, teach methods and strategies of critical thinking based on poorly structured problems to help students master critical thinking, and provide practical activities in which students can interact with each other to develop knowledge construction and critical thinking utilizing the approach of collaborative problem-solving.

Third, teachers should be more trained in critical thinking, particularly preservice teachers, and they also should be conscious of the ways in which teachers’ support for learning scaffolds can promote critical thinking. The learning scaffold supported by teachers had the greatest impact on learners’ critical thinking, in addition to being more directive, targeted, and timely (Wood et al., 2006 ). Critical thinking can only be effectively taught when teachers recognize the significance of critical thinking for students’ growth and use the proper approaches while designing instructional activities (Forawi, 2016 ). Therefore, with the intention of enabling teachers to create learning scaffolds to cultivate learners’ critical thinking utilizing the approach of collaborative problem solving, it is essential to concentrate on the teacher-supported learning scaffolds and enhance the instruction for teaching critical thinking to teachers, especially preservice teachers.

Implications and limitations

There are certain limitations in this meta-analysis, but future research can correct them. First, the search languages were restricted to English and Chinese, so it is possible that pertinent studies that were written in other languages were overlooked, resulting in an inadequate number of articles for review. Second, these data provided by the included studies are partially missing, such as whether teachers were trained in the theory and practice of critical thinking, the average age and gender of learners, and the differences in critical thinking among learners of various ages and genders. Third, as is typical for review articles, more studies were released while this meta-analysis was being done; therefore, it had a time limit. With the development of relevant research, future studies focusing on these issues are highly relevant and needed.

Conclusions

The subject of the magnitude of collaborative problem-solving’s impact on fostering students’ critical thinking, which received scant attention from other studies, was successfully addressed by this study. The question of the effectiveness of collaborative problem-solving in promoting students’ critical thinking was addressed in this study, which addressed a topic that had gotten little attention in earlier research. The following conclusions can be made:

Regarding the results obtained, collaborative problem solving is an effective teaching approach to foster learners’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]). With respect to the dimensions of critical thinking, collaborative problem-solving can significantly and effectively improve students’ attitudinal tendency, and the comprehensive effect is significant (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

As demonstrated by both the results and the discussion, there are varying degrees of beneficial effects on students’ critical thinking from all seven moderating factors, which were found across 36 studies. In this context, the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have a positive impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. Since the learning stage (chi 2  = 3.15, P  = 0.21 > 0.05) and measuring tools (chi 2  = 0.08, P  = 0.78 > 0.05) did not demonstrate any significant intergroup differences, we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving.

Data availability

All data generated or analyzed during this study are included within the article and its supplementary information files, and the supplementary information files are available in the Dataverse repository: https://doi.org/10.7910/DVN/IPFJO6 .

Bensley DA, Spero RA (2014) Improving critical thinking skills and meta-cognitive monitoring through direct infusion. Think Skills Creat 12:55–68. https://doi.org/10.1016/j.tsc.2014.02.001

Article   Google Scholar  

Castle A (2009) Defining and assessing critical thinking skills for student radiographers. Radiography 15(1):70–76. https://doi.org/10.1016/j.radi.2007.10.007

Chen XD (2013) An empirical study on the influence of PBL teaching model on critical thinking ability of non-English majors. J PLA Foreign Lang College 36 (04):68–72

Google Scholar  

Cohen A (1992) Antecedents of organizational commitment across occupational groups: a meta-analysis. J Organ Behav. https://doi.org/10.1002/job.4030130602

Cooper H (2010) Research synthesis and meta-analysis: a step-by-step approach, 4th edn. Sage, London, England

Cindy HS (2004) Problem-based learning: what and how do students learn? Educ Psychol Rev 51(1):31–39

Duch BJ, Gron SD, Allen DE (2001) The power of problem-based learning: a practical “how to” for teaching undergraduate courses in any discipline. Stylus Educ Sci 2:190–198

Ennis RH (1989) Critical thinking and subject specificity: clarification and needed research. Educ Res 18(3):4–10. https://doi.org/10.3102/0013189x018003004

Facione PA (1990) Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations. Eric document reproduction service. https://eric.ed.gov/?id=ed315423

Facione PA, Facione NC (1992) The California Critical Thinking Dispositions Inventory (CCTDI) and the CCTDI test manual. California Academic Press, Millbrae, CA

Forawi SA (2016) Standard-based science education and critical thinking. Think Skills Creat 20:52–62. https://doi.org/10.1016/j.tsc.2016.02.005

Halpern DF (2001) Assessing the effectiveness of critical thinking instruction. J Gen Educ 50(4):270–286. https://doi.org/10.2307/27797889

Hu WP, Liu J (2015) Cultivation of pupils’ thinking ability: a five-year follow-up study. Psychol Behav Res 13(05):648–654. https://doi.org/10.3969/j.issn.1672-0628.2015.05.010

Huber K (2016) Does college teach critical thinking? A meta-analysis. Rev Educ Res 86(2):431–468. https://doi.org/10.3102/0034654315605917

Kek MYCA, Huijser H (2011) The power of problem-based learning in developing critical thinking skills: preparing students for tomorrow’s digital futures in today’s classrooms. High Educ Res Dev 30(3):329–341. https://doi.org/10.1080/07294360.2010.501074

Kuncel NR (2011) Measurement and meaning of critical thinking (Research report for the NRC 21st Century Skills Workshop). National Research Council, Washington, DC

Kyndt E, Raes E, Lismont B, Timmers F, Cascallar E, Dochy F (2013) A meta-analysis of the effects of face-to-face cooperative learning. Do recent studies falsify or verify earlier findings? Educ Res Rev 10(2):133–149. https://doi.org/10.1016/j.edurev.2013.02.002

Leng J, Lu XX (2020) Is critical thinking really teachable?—A meta-analysis based on 79 experimental or quasi experimental studies. Open Educ Res 26(06):110–118. https://doi.org/10.13966/j.cnki.kfjyyj.2020.06.011

Liang YZ, Zhu K, Zhao CL (2017) An empirical study on the depth of interaction promoted by collaborative problem solving learning activities. J E-educ Res 38(10):87–92. https://doi.org/10.13811/j.cnki.eer.2017.10.014

Lipsey M, Wilson D (2001) Practical meta-analysis. International Educational and Professional, London, pp. 92–160

Liu Z, Wu W, Jiang Q (2020) A study on the influence of problem based learning on college students’ critical thinking-based on a meta-analysis of 31 studies. Explor High Educ 03:43–49

Morris SB (2008) Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods 11(2):364–386. https://doi.org/10.1177/1094428106291059

Article   ADS   Google Scholar  

Mulnix JW (2012) Thinking critically about critical thinking. Educ Philos Theory 44(5):464–479. https://doi.org/10.1111/j.1469-5812.2010.00673.x

Naber J, Wyatt TH (2014) The effect of reflective writing interventions on the critical thinking skills and dispositions of baccalaureate nursing students. Nurse Educ Today 34(1):67–72. https://doi.org/10.1016/j.nedt.2013.04.002

National Research Council (2012) Education for life and work: developing transferable knowledge and skills in the 21st century. The National Academies Press, Washington, DC

Niu L, Behar HLS, Garvan CW (2013) Do instructional interventions influence college students’ critical thinking skills? A meta-analysis. Educ Res Rev 9(12):114–128. https://doi.org/10.1016/j.edurev.2012.12.002

Peng ZM, Deng L (2017) Towards the core of education reform: cultivating critical thinking skills as the core of skills in the 21st century. Res Educ Dev 24:57–63. https://doi.org/10.14121/j.cnki.1008-3855.2017.24.011

Reiser BJ (2004) Scaffolding complex learning: the mechanisms of structuring and problematizing student work. J Learn Sci 13(3):273–304. https://doi.org/10.1207/s15327809jls1303_2

Ruggiero VR (2012) The art of thinking: a guide to critical and creative thought, 4th edn. Harper Collins College Publishers, New York

Schellens T, Valcke M (2006) Fostering knowledge construction in university students through asynchronous discussion groups. Comput Educ 46(4):349–370. https://doi.org/10.1016/j.compedu.2004.07.010

Sendag S, Odabasi HF (2009) Effects of an online problem based learning course on content knowledge acquisition and critical thinking skills. Comput Educ 53(1):132–141. https://doi.org/10.1016/j.compedu.2009.01.008

Sison R (2008) Investigating Pair Programming in a Software Engineering Course in an Asian Setting. 2008 15th Asia-Pacific Software Engineering Conference, pp. 325–331. https://doi.org/10.1109/APSEC.2008.61

Simpson E, Courtney M (2002) Critical thinking in nursing education: literature review. Mary Courtney 8(2):89–98

Stewart L, Tierney J, Burdett S (2006) Do systematic reviews based on individual patient data offer a means of circumventing biases associated with trial publications? Publication bias in meta-analysis. John Wiley and Sons Inc, New York, pp. 261–286

Tiwari A, Lai P, So M, Yuen K (2010) A comparison of the effects of problem-based learning and lecturing on the development of students’ critical thinking. Med Educ 40(6):547–554. https://doi.org/10.1111/j.1365-2929.2006.02481.x

Wood D, Bruner JS, Ross G (2006) The role of tutoring in problem solving. J Child Psychol Psychiatry 17(2):89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Wei T, Hong S (2022) The meaning and realization of teachable critical thinking. Educ Theory Practice 10:51–57

Xu EW, Wang W, Wang QX (2022) A meta-analysis of the effectiveness of programming teaching in promoting K-12 students’ computational thinking. Educ Inf Technol. https://doi.org/10.1007/s10639-022-11445-2

Yang YC, Newby T, Bill R (2008) Facilitating interactions through structured web-based bulletin boards: a quasi-experimental study on promoting learners’ critical thinking skills. Comput Educ 50(4):1572–1585. https://doi.org/10.1016/j.compedu.2007.04.006

Yore LD, Pimm D, Tuan HL (2007) The literacy component of mathematical and scientific literacy. Int J Sci Math Educ 5(4):559–589. https://doi.org/10.1007/s10763-007-9089-4

Zhang T, Zhang S, Gao QQ, Wang JH (2022) Research on the development of learners’ critical thinking in online peer review. Audio Visual Educ Res 6:53–60. https://doi.org/10.13811/j.cnki.eer.2022.06.08

Download references

Acknowledgements

This research was supported by the graduate scientific research and innovation project of Xinjiang Uygur Autonomous Region named “Research on in-depth learning of high school information technology courses for the cultivation of computing thinking” (No. XJ2022G190) and the independent innovation fund project for doctoral students of the College of Educational Science of Xinjiang Normal University named “Research on project-based teaching of high school information technology courses from the perspective of discipline core literacy” (No. XJNUJKYA2003).

Author information

Authors and affiliations.

College of Educational Science, Xinjiang Normal University, 830017, Urumqi, Xinjiang, China

Enwei Xu, Wei Wang & Qingxia Wang

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Enwei Xu or Wei Wang .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Additional information.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary tables, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Xu, E., Wang, W. & Wang, Q. The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature. Humanit Soc Sci Commun 10 , 16 (2023). https://doi.org/10.1057/s41599-023-01508-1

Download citation

Received : 07 August 2022

Accepted : 04 January 2023

Published : 11 January 2023

DOI : https://doi.org/10.1057/s41599-023-01508-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Impacts of online collaborative learning on students’ intercultural communication apprehension and intercultural communicative competence.

  • Hoa Thi Hoang Chau
  • Hung Phu Bui
  • Quynh Thi Huong Dinh

Education and Information Technologies (2024)

Exploring the effects of digital technology on deep learning: a meta-analysis

The impacts of computer-supported collaborative learning on students’ critical thinking: a meta-analysis.

  • Yoseph Gebrehiwot Tedla
  • Hsiu-Ling Chen

Sustainable electricity generation and farm-grid utilization from photovoltaic aquaculture: a bibliometric analysis

  • A. A. Amusa
  • M. Alhassan

International Journal of Environmental Science and Technology (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

problem solving as a teaching and learning strategy

teaching_learning_banner

  • Accessible Document Design Fundamentals
  • Word Accessibility Guide
  • PowerPoint Accessibility Guide
  • PDF Accessibility Guide
  • Excel Accessibility Guide
  • Basic HTML Accessibility Guide
  • Accessible Course Design Guide
  • Multimedia Accessibility Guides
  • TA Resources
  • Teaching Consultation
  • Teaching Portfolio Program
  • Grad Academy for College Teaching
  • Faculty Events
  • The Art of Teaching
  • 2022 Illinois Summer Teaching Institute
  • Large Classes
  • Leading Discussions
  • Laboratory Classes
  • Lecture-Based Classes
  • Planning a Class Session
  • Questioning Strategies
  • Classroom Assessment Techniques (CATs)
  • Problem-Based Learning (PBL)
  • The Case Method
  • Community-Based Learning: Service Learning
  • Group Learning
  • Just-in-Time Teaching
  • Creating a Syllabus
  • Motivating Students
  • Dealing With Cheating
  • Discouraging & Detecting Plagiarism
  • Diversity & Creating an Inclusive Classroom
  • Harassment & Discrimination
  • Professional Conduct
  • Foundations of Good Teaching
  • Student Engagement
  • Assessment Strategies
  • Course Design
  • Student Resources
  • Teaching Tips
  • Graduate Teacher Certificate
  • Certificate in Foundations of Teaching
  • Teacher Scholar Certificate
  • Certificate in Technology-Enhanced Teaching
  • Master Course in Online Teaching (MCOT)
  • 2022 Celebration of College Teaching
  • 2023 Celebration of College Teaching
  • Hybrid Teaching and Learning Certificate
  • 2024 Celebration of College Teaching
  • Classroom Observation Etiquette
  • Teaching Philosophy Statement
  • Pedagogical Literature Review
  • Scholarship of Teaching and Learning
  • Instructor Stories
  • Podcast: Teach Talk Listen Learn
  • Universal Design for Learning

Sign-Up to receive Teaching and Learning news and events

Problem-Based Learning (PBL) is a teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to direct presentation of facts and concepts. In addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and communication skills. It can also provide opportunities for working in groups, finding and evaluating research materials, and life-long learning (Duch et al, 2001).

PBL can be incorporated into any learning situation. In the strictest definition of PBL, the approach is used over the entire semester as the primary method of teaching. However, broader definitions and uses range from including PBL in lab and design classes, to using it simply to start a single discussion. PBL can also be used to create assessment items. The main thread connecting these various uses is the real-world problem.

Any subject area can be adapted to PBL with a little creativity. While the core problems will vary among disciplines, there are some characteristics of good PBL problems that transcend fields (Duch, Groh, and Allen, 2001):

  • The problem must motivate students to seek out a deeper understanding of concepts.
  • The problem should require students to make reasoned decisions and to defend them.
  • The problem should incorporate the content objectives in such a way as to connect it to previous courses/knowledge.
  • If used for a group project, the problem needs a level of complexity to ensure that the students must work together to solve it.
  • If used for a multistage project, the initial steps of the problem should be open-ended and engaging to draw students into the problem.

The problems can come from a variety of sources: newspapers, magazines, journals, books, textbooks, and television/ movies. Some are in such form that they can be used with little editing; however, others need to be rewritten to be of use. The following guidelines from The Power of Problem-Based Learning (Duch et al, 2001) are written for creating PBL problems for a class centered around the method; however, the general ideas can be applied in simpler uses of PBL:

  • Choose a central idea, concept, or principle that is always taught in a given course, and then think of a typical end-of-chapter problem, assignment, or homework that is usually assigned to students to help them learn that concept. List the learning objectives that students should meet when they work through the problem.
  • Think of a real-world context for the concept under consideration. Develop a storytelling aspect to an end-of-chapter problem, or research an actual case that can be adapted, adding some motivation for students to solve the problem. More complex problems will challenge students to go beyond simple plug-and-chug to solve it. Look at magazines, newspapers, and articles for ideas on the story line. Some PBL practitioners talk to professionals in the field, searching for ideas of realistic applications of the concept being taught.
  • What will the first page (or stage) look like? What open-ended questions can be asked? What learning issues will be identified?
  • How will the problem be structured?
  • How long will the problem be? How many class periods will it take to complete?
  • Will students be given information in subsequent pages (or stages) as they work through the problem?
  • What resources will the students need?
  • What end product will the students produce at the completion of the problem?
  • Write a teacher's guide detailing the instructional plans on using the problem in the course. If the course is a medium- to large-size class, a combination of mini-lectures, whole-class discussions, and small group work with regular reporting may be necessary. The teacher's guide can indicate plans or options for cycling through the pages of the problem interspersing the various modes of learning.
  • The final step is to identify key resources for students. Students need to learn to identify and utilize learning resources on their own, but it can be helpful if the instructor indicates a few good sources to get them started. Many students will want to limit their research to the Internet, so it will be important to guide them toward the library as well.

The method for distributing a PBL problem falls under three closely related teaching techniques: case studies, role-plays, and simulations. Case studies are presented to students in written form. Role-plays have students improvise scenes based on character descriptions given. Today, simulations often involve computer-based programs. Regardless of which technique is used, the heart of the method remains the same: the real-world problem.

Where can I learn more?

  • PBL through the Institute for Transforming Undergraduate Education at the University of Delaware
  • Duch, B. J., Groh, S. E, & Allen, D. E. (Eds.). (2001). The power of problem-based learning . Sterling, VA: Stylus.
  • Grasha, A. F. (1996). Teaching with style: A practical guide to enhancing learning by understanding teaching and learning styles. Pittsburgh: Alliance Publishers.

Center for Innovation in Teaching & Learning

249 Armory Building 505 East Armory Avenue Champaign, IL 61820

217 333-1462

Email: [email protected]

Office of the Provost

Center for Teaching Innovation

Resource library.

  • Establishing Community Agreements and Classroom Norms
  • Sample group work rubric
  • Problem-Based Learning Clearinghouse of Activities, University of Delaware

Problem-Based Learning

Problem-based learning  (PBL) is a student-centered approach in which students learn about a subject by working in groups to solve an open-ended problem. This problem is what drives the motivation and the learning. 

Why Use Problem-Based Learning?

Nilson (2010) lists the following learning outcomes that are associated with PBL. A well-designed PBL project provides students with the opportunity to develop skills related to:

  • Working in teams.
  • Managing projects and holding leadership roles.
  • Oral and written communication.
  • Self-awareness and evaluation of group processes.
  • Working independently.
  • Critical thinking and analysis.
  • Explaining concepts.
  • Self-directed learning.
  • Applying course content to real-world examples.
  • Researching and information literacy.
  • Problem solving across disciplines.

Considerations for Using Problem-Based Learning

Rather than teaching relevant material and subsequently having students apply the knowledge to solve problems, the problem is presented first. PBL assignments can be short, or they can be more involved and take a whole semester. PBL is often group-oriented, so it is beneficial to set aside classroom time to prepare students to   work in groups  and to allow them to engage in their PBL project.

Students generally must:

  • Examine and define the problem.
  • Explore what they already know about underlying issues related to it.
  • Determine what they need to learn and where they can acquire the information and tools necessary to solve the problem.
  • Evaluate possible ways to solve the problem.
  • Solve the problem.
  • Report on their findings.

Getting Started with Problem-Based Learning

  • Articulate the learning outcomes of the project. What do you want students to know or be able to do as a result of participating in the assignment?
  • Create the problem. Ideally, this will be a real-world situation that resembles something students may encounter in their future careers or lives. Cases are often the basis of PBL activities. Previously developed PBL activities can be found online through the University of Delaware’s PBL Clearinghouse of Activities .
  • Establish ground rules at the beginning to prepare students to work effectively in groups.
  • Introduce students to group processes and do some warm up exercises to allow them to practice assessing both their own work and that of their peers.
  • Consider having students take on different roles or divide up the work up amongst themselves. Alternatively, the project might require students to assume various perspectives, such as those of government officials, local business owners, etc.
  • Establish how you will evaluate and assess the assignment. Consider making the self and peer assessments a part of the assignment grade.

Nilson, L. B. (2010).  Teaching at its best: A research-based resource for college instructors  (2nd ed.).  San Francisco, CA: Jossey-Bass. 

  • Grades 6-12
  • School Leaders

Have you gotten your free poster delivered? ✨

44 Powerful Instructional Strategies Examples for Every Classroom

So many ways to help students learn!

Collage of instructional strategies examples including demonstrations and reading for meaning

Looking for some new ways to teach and learn in your classroom? This roundup of instructional strategies examples includes methods that will appeal to all learners and work for any teacher.

What are instructional strategies?

In the simplest of terms, instructional strategies are the methods teachers use to achieve learning objectives. In other words, pretty much every learning activity you can think of is an example of an instructional strategy. They’re also known as teaching strategies and learning strategies.

The more instructional strategies a teacher has in their tool kit, the more they’re able to reach all of their students. Different types of learners respond better to various strategies, and some topics are best taught with one strategy over another. Usually, teachers use a wide array of strategies across a single lesson. This gives all students a chance to play to their strengths and ensures they have a deeper connection to the material.

There are a lot of different ways of looking at instructional strategies. One of the most common breaks them into five basic types. It’s important to remember that many learning activities fall into more than one of these categories, and teachers rarely use one type of strategy alone. The key is to know when a strategy can be most effective, for the learners or for the learning objective. Here’s a closer look at the five basic types, with instructional strategies examples for each.

Direct Instruction Instructional Strategies Examples

Direct instruction can also be called “teacher-led instruction,” and it’s exactly what it sounds like. The teacher provides the information, while the students watch, listen, and learn. Students may participate by answering questions asked by the teacher or practicing a skill under their supervision. This is a very traditional form of teaching, and one that can be highly effective when you need to provide information or teach specific skills.

This method gets a lot of flack these days for being “boring” or “old-fashioned.” It’s true that you don’t want it to be your only instructional strategy, but short lectures are still very effective learning tools. This type of direct instruction is perfect for imparting specific detailed information or teaching a step-by-step process. And lectures don’t have to be boring—just look at the success of TED Talks .

Didactic Questioning

These are often paired with other direct instruction methods like lecturing. The teacher asks questions to determine student understanding of the material. They’re often questions that start with “who,” “what,” “where,” and “when.”

Demonstration

In this direct instruction method, students watch as a teacher demonstrates an action or skill. This might be seeing a teacher solving a math problem step-by-step, or watching them demonstrate proper handwriting on the whiteboard. Usually, this is followed by having students do hands-on practice or activities in a similar manner.

Drill & Practice

If you’ve ever used flash cards to help kids practice math facts or had your whole class chant the spelling of a word out loud, you’ve used drill & practice. It’s another one of those traditional instructional strategies examples. When kids need to memorize specific information or master a step-by-step skill, drill & practice really works.

Indirect Instruction Instructional Strategies Examples

This form of instruction is learner-led and helps develop higher-order thinking skills. Teachers guide and support, but students drive the learning through reading, research, asking questions, formulating ideas and opinions, and more. This method isn’t ideal when you need to teach detailed information or a step-by-step process. Instead, use it to develop critical thinking skills , especially when more than one solution or opinion is valid. ADVERTISEMENT

Problem-Solving

In this indirect learning method, students work their way through a problem to find a solution. Along the way, they must develop the knowledge to understand the problem and use creative thinking to solve it. STEM challenges are terrific examples of problem-solving instructional strategies.

Project-Based Learning

When kids participate in true project-based learning, they’re learning through indirect and experiential strategies. As they work to find solutions to a real-world problem, they develop critical thinking skills and learn by research, trial and error, collaboration, and other experiences.

Learn more: What Is Project-Based Learning?

Concept Mapping

Students use concept maps to break down a subject into its main points and draw connections between these points. They brainstorm the big-picture ideas, then draw lines to connect terms, details, and more to help them visualize the topic.

Case Studies

When you think of case studies, law school is probably the first thing that jumps to mind. But this method works at any age, for a variety of topics. This indirect learning method teaches students to use material to draw conclusions, make connections, and advance their existing knowledge.

Reading for Meaning

This is different than learning to read. Instead, it’s when students use texts (print or digital) to learn about a topic. This traditional strategy works best when students already have strong reading comprehension skills. Try our free reading comprehension bundle to give students the ability to get the most out of reading for meaning.

Flipped Classroom

In a flipped classroom, students read texts or watch prerecorded lectures at home. Classroom time is used for deeper learning activities, like discussions, labs, and one-on-one time for teachers and students.

Learn more: What Is a Flipped Classroom?

Experiential Learning Instructional Strategies Examples

In experiential learning, students learn by doing. Rather than following a set of instructions or listening to a lecture, they dive right into an activity or experience. Once again, the teacher is a guide, there to answer questions and gently keep learning on track if necessary. At the end, and often throughout, the learners reflect on their experience, drawing conclusions about the skills and knowledge they’ve gained. Experiential learning values the process over the product.

Science Experiments

This is experiential learning at its best. Hands-on experiments let kids learn to establish expectations, create sound methodology, draw conclusions, and more.

Learn more: Hundreds of science experiment ideas for kids and teens

Field Trips

Heading out into the real world gives kids a chance to learn indirectly, through experiences. They may see concepts they already know put into practice or learn new information or skills from the world around them.

Learn more: The Big List of PreK-12 Field Trip Ideas

Games and Gamification

Teachers have long known that playing games is a fun (and sometimes sneaky) way to get kids to learn. You can use specially designed educational games for any subject. Plus, regular board games often involve a lot of indirect learning about math, reading, critical thinking, and more.

Learn more: Classic Classroom Games and Best Online Educational Games

Service Learning

This is another instructional strategies example that takes students out into the real world. It often involves problem-solving skills and gives kids the opportunity for meaningful social-emotional learning.

Learn more: What Is Service Learning?

Interactive Instruction Instructional Strategies Examples

As you might guess, this strategy is all about interaction between the learners and often the teacher. The focus is on discussion and sharing. Students hear other viewpoints, talk things out, and help each other learn and understand the material. Teachers can be a part of these discussions, or they can oversee smaller groups or pairings and help guide the interactions as needed. Interactive instruction helps students develop interpersonal skills like listening and observation.

Peer Instruction

It’s often said the best way to learn something is to teach it to others. Studies into the so-called “ protégé effect ” seem to prove it too. In order to teach, you first must understand the information yourself. Then, you have to find ways to share it with others—sometimes more than one way. This deepens your connection to the material, and it sticks with you much longer. Try having peers instruct one another in your classroom, and see the magic in action.

Reciprocal Teaching

This method is specifically used in reading instruction, as a cooperative learning strategy. Groups of students take turns acting as the teacher, helping students predict, clarify, question, and summarize. Teachers model the process initially, then observe and guide only as needed.

Some teachers shy away from debate in the classroom, afraid it will become too adversarial. But learning to discuss and defend various points of view is an important life skill. Debates teach students to research their topic, make informed choices, and argue effectively using facts instead of emotion.

Learn more: High School Debate Topics To Challenge Every Student

Class or Small-Group Discussion

Class, small-group, and pair discussions are all excellent interactive instructional strategies examples. As students discuss a topic, they clarify their own thinking and learn from the experiences and opinions of others. Of course, in addition to learning about the topic itself, they’re also developing valuable active listening and collaboration skills.

Learn more: Strategies To Improve Classroom Discussions

Socratic Seminar and Fishbowl

Take your classroom discussions one step further with the fishbowl method. A small group of students sits in the middle of the class. They discuss and debate a topic, while their classmates listen silently and make notes. Eventually, the teacher opens the discussion to the whole class, who offer feedback and present their own assertions and challenges.

Learn more: How I Use Fishbowl Discussions To Engage Every Student

Brainstorming

Rather than having a teacher provide examples to explain a topic or solve a problem, students do the work themselves. Remember the one rule of brainstorming: Every idea is welcome. Ensure everyone gets a chance to participate, and form diverse groups to generate lots of unique ideas.

Role-Playing

Role-playing is sort of like a simulation but less intense. It’s perfect for practicing soft skills and focusing on social-emotional learning . Put a twist on this strategy by having students model bad interactions as well as good ones and then discussing the difference.

Think-Pair-Share

This structured discussion technique is simple: First, students think about a question posed by the teacher. Pair students up, and let them talk about their answer. Finally open it up to whole-class discussion. This helps kids participate in discussions in a low-key way and gives them a chance to “practice” before they talk in front of the whole class.

Learn more: Think-Pair-Share and Fun Alternatives

Independent Learning Instructional Strategies Examples

Also called independent study, this form of learning is almost entirely student-led. Teachers take a backseat role, providing materials, answering questions, and guiding or supervising. It’s an excellent way to allow students to dive deep into topics that really interest them, or to encourage learning at a pace that’s comfortable for each student.

Learning Centers

Foster independent learning strategies with centers just for math, writing, reading, and more. Provide a variety of activities, and let kids choose how they spend their time. They often learn better from activities they enjoy.

Learn more: The Big List of K-2 Literacy Centers

Computer-Based Instruction

Once a rarity, now a daily fact of life, computer-based instruction lets students work independently. They can go at their own pace, repeating sections without feeling like they’re holding up the class. Teach students good computer skills at a young age so you’ll feel comfortable knowing they’re focusing on the work and doing it safely.

Writing an essay encourages kids to clarify and organize their thinking. Written communication has become more important in recent years, so being able to write clearly and concisely is a skill every kid needs. This independent instructional strategy has stood the test of time for good reason.

Learn more: The Big List of Essay Topics for High School

Research Projects

Here’s another oldie-but-goodie! When kids work independently to research and present on a topic, their learning is all up to them. They set the pace, choose a focus, and learn how to plan and meet deadlines. This is often a chance for them to show off their creativity and personality too.

Personal journals give kids a chance to reflect and think critically on topics. Whether responding to teacher prompts or simply recording their daily thoughts and experiences, this independent learning method strengthens writing and intrapersonal skills.

Learn more: The Benefits of Journaling in the Classroom

Play-Based Learning

In play-based learning programs, children learn by exploring their own interests. Teachers identify and help students pursue their interests by asking questions, creating play opportunities, and encouraging students to expand their play.

Learn more: What Is Play-Based Learning?

More Instructional Strategies Examples

Don’t be afraid to try new strategies from time to time—you just might find a new favorite! Here are some of the most common instructional strategies examples.

Simulations

This strategy combines experiential, interactive, and indirect learning all in one. The teacher sets up a simulation of a real-world activity or experience. Students take on roles and participate in the exercise, using existing skills and knowledge or developing new ones along the way. At the end, the class reflects separately and together on what happened and what they learned.

Storytelling

Ever since Aesop’s fables, we’ve been using storytelling as a way to teach. Stories grab students’ attention right from the start and keep them engaged throughout the learning process. Real-life stories and fiction both work equally well, depending on the situation.

Learn more: Teaching as Storytelling

Scaffolding

Scaffolding is defined as breaking learning into bite-sized chunks so students can more easily tackle complex material. It builds on old ideas and connects them to new ones. An educator models or demonstrates how to solve a problem, then steps back and encourages the students to solve the problem independently. Scaffolding teaching gives students the support they need by breaking learning into achievable sizes while they progress toward understanding and independence.

Learn more: What Is Scaffolding in Education?

Spaced Repetition

Often paired with direct or independent instruction, spaced repetition is a method where students are asked to recall certain information or skills at increasingly longer intervals. For instance, the day after discussing the causes of the American Civil War in class, the teacher might return to the topic and ask students to list the causes. The following week, the teacher asks them once again, and then a few weeks after that. Spaced repetition helps make knowledge stick, and it is especially useful when it’s not something students practice each day but will need to know in the long term (such as for a final exam).

Graphic Organizers

Graphic organizers are a way of organizing information visually to help students understand and remember it. A good organizer simplifies complex information and lays it out in a way that makes it easier for a learner to digest. Graphic organizers may include text and images, and they help students make connections in a meaningful way.

Learn more: Graphic Organizers 101: Why and How To Use Them

Jigsaw combines group learning with peer teaching. Students are assigned to “home groups.” Within that group, each student is given a specialized topic to learn about. They join up with other students who were given the same topic, then research, discuss, and become experts. Finally, students return to their home group and teach the other members about the topic they specialized in.

Multidisciplinary Instruction

As the name implies, this instructional strategy approaches a topic using techniques and aspects from multiple disciplines, helping students explore it more thoroughly from a variety of viewpoints. For instance, to learn more about a solar eclipse, students might explore scientific explanations, research the history of eclipses, read literature related to the topic, and calculate angles, temperatures, and more.

Interdisciplinary Instruction

This instructional strategy takes multidisciplinary instruction a step further, using it to synthesize information and viewpoints from a variety of disciplines to tackle issues and problems. Imagine a group of students who want to come up with ways to improve multicultural relations at their school. They might approach the topic by researching statistical information about the school population, learning more about the various cultures and their history, and talking with students, teachers, and more. Then, they use the information they’ve uncovered to present possible solutions.

Differentiated Instruction

Differentiated instruction means tailoring your teaching so all students, regardless of their ability, can learn the classroom material. Teachers can customize the content, process, product, and learning environment to help all students succeed. There are lots of differentiated instructional strategies to help educators accommodate various learning styles, backgrounds, and more.

Learn more: What Is Differentiated Instruction?

Culturally Responsive Teaching

Culturally responsive teaching is based on the understanding that we learn best when we can connect with the material. For culturally responsive teachers, that means weaving their students’ various experiences, customs, communication styles, and perspectives throughout the learning process.

Learn more: What Is Culturally Responsive Teaching?

Response to Intervention

Response to Intervention, or RTI, is a way to identify and support students who need extra academic or behavioral help to succeed in school. It’s a tiered approach with various “levels” students move through depending on how much support they need.

Learn more: What Is Response to Intervention?

Inquiry-Based Learning

Inquiry-based learning means tailoring your curriculum to what your students are interested in rather than having a set agenda that you can’t veer from—it means letting children’s curiosity take the lead and then guiding that interest to explore, research, and reflect upon their own learning.

Learn more: What Is Inquiry-Based Learning?

Growth Mindset

Growth mindset is key for learners. They must be open to new ideas and processes and believe they can learn anything with enough effort. It sounds simplistic, but when students really embrace the concept, it can be a real game-changer. Teachers can encourage a growth mindset by using instructional strategies that allow students to learn from their mistakes, rather than punishing them for those mistakes.

Learn more: Growth Mindset vs. Fixed Mindset and 25 Growth Mindset Activities

Blended Learning

This strategy combines face-to-face classroom learning with online learning, in a mix of self-paced independent learning and direct instruction. It’s incredibly common in today’s schools, where most students spend at least part of their day completing self-paced lessons and activities via online technology. Students may also complete their online instructional time at home.

Asynchronous (Self-Paced) Learning

This fancy term really just describes strategies that allow each student to work at their own pace using a flexible schedule. This method became a necessity during the days of COVID lockdowns, as families did their best to let multiple children share one device. All students in an asynchronous class setting learn the same material using the same activities, but do so on their own timetable.

Learn more: Synchronous vs. Asynchronous Learning

Essential Questions

Essential questions are the big-picture questions that inspire inquiry and discussion. Teachers give students a list of several essential questions to consider as they begin a unit or topic. As they dive deeper into the information, teachers ask more specific essential questions to help kids make connections to the “essential” points of a text or subject.

Learn more: Questions That Set a Purpose for Reading

How do I choose the right instructional strategies for my classroom?

When it comes to choosing instructional strategies, there are several things to consider:

  • Learning objectives: What will students be able to do as a result of this lesson or activity? If you are teaching specific skills or detailed information, a direct approach may be best. When you want students to develop their own methods of understanding, consider experiential learning. To encourage critical thinking skills, try indirect or interactive instruction.
  • Assessments : How will you be measuring whether students have met the learning objectives? The strategies you use should prepare them to succeed. For instance, if you’re teaching spelling, direct instruction is often the best method, since drill-and-practice simulates the experience of taking a spelling test.
  • Learning styles : What types of learners do you need to accommodate? Most classrooms (and most students) respond best to a mix of instructional strategies. Those who have difficulty speaking in class might not benefit as much from interactive learning, and students who have trouble staying on task might struggle with independent learning.
  • Learning environment: Every classroom looks different, and the environment can vary day by day. Perhaps it’s testing week for other grades in your school, so you need to keep things quieter in your classroom. This probably isn’t the time for experiments or lots of loud discussions. Some activities simply aren’t practical indoors, and the weather might not allow you to take learning outside.

Come discuss instructional strategies and ask for advice in the We Are Teachers HELPLINE group on Facebook !

Plus, check out the things the best instructional coaches do, according to teachers ..

Looking for new and exciting instructional strategies examples to help all of your students learn more effectively? Get them here!

You Might Also Like

intrinsic and extrinsic motivation

Understanding Intrinsic vs. Extrinsic Motivation in the Classroom

What's the magic formula? Continue Reading

Copyright © 2024. All rights reserved. 5335 Gate Parkway, Jacksonville, FL 32256

  • Campus Life
  • ...a student.
  • ...a veteran.
  • ...an alum.
  • ...a parent.
  • ...faculty or staff.
  • Class Schedule
  • Crisis Resources
  • People Finder
  • Change Password

UTC RAVE Alert

Critical thinking and problem-solving, jump to: , what is critical thinking, characteristics of critical thinking, why teach critical thinking.

  • Teaching Strategies to Help Promote Critical Thinking Skills

References and Resources

When examining the vast literature on critical thinking, various definitions of critical thinking emerge. Here are some samples:

  • "Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action" (Scriven, 1996).
  • "Most formal definitions characterize critical thinking as the intentional application of rational, higher order thinking skills, such as analysis, synthesis, problem recognition and problem solving, inference, and evaluation" (Angelo, 1995, p. 6).
  • "Critical thinking is thinking that assesses itself" (Center for Critical Thinking, 1996b).
  • "Critical thinking is the ability to think about one's thinking in such a way as 1. To recognize its strengths and weaknesses and, as a result, 2. To recast the thinking in improved form" (Center for Critical Thinking, 1996c).

Perhaps the simplest definition is offered by Beyer (1995) : "Critical thinking... means making reasoned judgments" (p. 8). Basically, Beyer sees critical thinking as using criteria to judge the quality of something, from cooking to a conclusion of a research paper. In essence, critical thinking is a disciplined manner of thought that a person uses to assess the validity of something (statements, news stories, arguments, research, etc.).

Back        

Wade (1995) identifies eight characteristics of critical thinking. Critical thinking involves asking questions, defining a problem, examining evidence, analyzing assumptions and biases, avoiding emotional reasoning, avoiding oversimplification, considering other interpretations, and tolerating ambiguity. Dealing with ambiguity is also seen by Strohm & Baukus (1995) as an essential part of critical thinking, "Ambiguity and doubt serve a critical-thinking function and are a necessary and even a productive part of the process" (p. 56).

Another characteristic of critical thinking identified by many sources is metacognition. Metacognition is thinking about one's own thinking. More specifically, "metacognition is being aware of one's thinking as one performs specific tasks and then using this awareness to control what one is doing" (Jones & Ratcliff, 1993, p. 10 ).

In the book, Critical Thinking, Beyer elaborately explains what he sees as essential aspects of critical thinking. These are:

  • Dispositions: Critical thinkers are skeptical, open-minded, value fair-mindedness, respect evidence and reasoning, respect clarity and precision, look at different points of view, and will change positions when reason leads them to do so.
  • Criteria: To think critically, must apply criteria. Need to have conditions that must be met for something to be judged as believable. Although the argument can be made that each subject area has different criteria, some standards apply to all subjects. "... an assertion must... be based on relevant, accurate facts; based on credible sources; precise; unbiased; free from logical fallacies; logically consistent; and strongly reasoned" (p. 12).
  • Argument: Is a statement or proposition with supporting evidence. Critical thinking involves identifying, evaluating, and constructing arguments.
  • Reasoning: The ability to infer a conclusion from one or multiple premises. To do so requires examining logical relationships among statements or data.
  • Point of View: The way one views the world, which shapes one's construction of meaning. In a search for understanding, critical thinkers view phenomena from many different points of view.
  • Procedures for Applying Criteria: Other types of thinking use a general procedure. Critical thinking makes use of many procedures. These procedures include asking questions, making judgments, and identifying assumptions.

Oliver & Utermohlen (1995) see students as too often being passive receptors of information. Through technology, the amount of information available today is massive. This information explosion is likely to continue in the future. Students need a guide to weed through the information and not just passively accept it. Students need to "develop and effectively apply critical thinking skills to their academic studies, to the complex problems that they will face, and to the critical choices they will be forced to make as a result of the information explosion and other rapid technological changes" (Oliver & Utermohlen, p. 1 ).

As mentioned in the section, Characteristics of Critical Thinking , critical thinking involves questioning. It is important to teach students how to ask good questions, to think critically, in order to continue the advancement of the very fields we are teaching. "Every field stays alive only to the extent that fresh questions are generated and taken seriously" (Center for Critical Thinking, 1996a ).

Beyer sees the teaching of critical thinking as important to the very state of our nation. He argues that to live successfully in a democracy, people must be able to think critically in order to make sound decisions about personal and civic affairs. If students learn to think critically, then they can use good thinking as the guide by which they live their lives.

Teaching Strategies to Help Promote Critical Thinking

The 1995, Volume 22, issue 1, of the journal, Teaching of Psychology , is devoted to the teaching critical thinking. Most of the strategies included in this section come from the various articles that compose this issue.

  • CATS (Classroom Assessment Techniques): Angelo stresses the use of ongoing classroom assessment as a way to monitor and facilitate students' critical thinking. An example of a CAT is to ask students to write a "Minute Paper" responding to questions such as "What was the most important thing you learned in today's class? What question related to this session remains uppermost in your mind?" The teacher selects some of the papers and prepares responses for the next class meeting.
  • Cooperative Learning Strategies: Cooper (1995) argues that putting students in group learning situations is the best way to foster critical thinking. "In properly structured cooperative learning environments, students perform more of the active, critical thinking with continuous support and feedback from other students and the teacher" (p. 8).
  • Case Study /Discussion Method: McDade (1995) describes this method as the teacher presenting a case (or story) to the class without a conclusion. Using prepared questions, the teacher then leads students through a discussion, allowing students to construct a conclusion for the case.
  • Using Questions: King (1995) identifies ways of using questions in the classroom:
  • Reciprocal Peer Questioning: Following lecture, the teacher displays a list of question stems (such as, "What are the strengths and weaknesses of...). Students must write questions about the lecture material. In small groups, the students ask each other the questions. Then, the whole class discusses some of the questions from each small group.
  • Reader's Questions: Require students to write questions on assigned reading and turn them in at the beginning of class. Select a few of the questions as the impetus for class discussion.
  • Conference Style Learning: The teacher does not "teach" the class in the sense of lecturing. The teacher is a facilitator of a conference. Students must thoroughly read all required material before class. Assigned readings should be in the zone of proximal development. That is, readings should be able to be understood by students, but also challenging. The class consists of the students asking questions of each other and discussing these questions. The teacher does not remain passive, but rather, helps "direct and mold discussions by posing strategic questions and helping students build on each others' ideas" (Underwood & Wald, 1995, p. 18 ).
  • Use Writing Assignments: Wade sees the use of writing as fundamental to developing critical thinking skills. "With written assignments, an instructor can encourage the development of dialectic reasoning by requiring students to argue both [or more] sides of an issue" (p. 24).
  • Written dialogues: Give students written dialogues to analyze. In small groups, students must identify the different viewpoints of each participant in the dialogue. Must look for biases, presence or exclusion of important evidence, alternative interpretations, misstatement of facts, and errors in reasoning. Each group must decide which view is the most reasonable. After coming to a conclusion, each group acts out their dialogue and explains their analysis of it.
  • Spontaneous Group Dialogue: One group of students are assigned roles to play in a discussion (such as leader, information giver, opinion seeker, and disagreer). Four observer groups are formed with the functions of determining what roles are being played by whom, identifying biases and errors in thinking, evaluating reasoning skills, and examining ethical implications of the content.
  • Ambiguity: Strohm & Baukus advocate producing much ambiguity in the classroom. Don't give students clear cut material. Give them conflicting information that they must think their way through.
  • Angelo, T. A. (1995). Beginning the dialogue: Thoughts on promoting critical thinking: Classroom assessment for critical thinking. Teaching of Psychology, 22(1), 6-7.
  • Beyer, B. K. (1995). Critical thinking. Bloomington, IN: Phi Delta Kappa Educational Foundation.
  • Center for Critical Thinking (1996a). The role of questions in thinking, teaching, and learning. [On-line]. Available HTTP: http://www.criticalthinking.org/University/univlibrary/library.nclk
  • Center for Critical Thinking (1996b). Structures for student self-assessment. [On-line]. Available HTTP: http://www.criticalthinking.org/University/univclass/trc.nclk
  • Center for Critical Thinking (1996c). Three definitions of critical thinking [On-line]. Available HTTP: http://www.criticalthinking.org/University/univlibrary/library.nclk
  • Cooper, J. L. (1995). Cooperative learning and critical thinking. Teaching of Psychology, 22(1), 7-8.
  • Jones, E. A. & Ratcliff, G. (1993). Critical thinking skills for college students. National Center on Postsecondary Teaching, Learning, and Assessment, University Park, PA. (Eric Document Reproduction Services No. ED 358 772)
  • King, A. (1995). Designing the instructional process to enhance critical thinking across the curriculum: Inquiring minds really do want to know: Using questioning to teach critical thinking. Teaching of Psychology, 22 (1) , 13-17.
  • McDade, S. A. (1995). Case study pedagogy to advance critical thinking. Teaching Psychology, 22(1), 9-10.
  • Oliver, H. & Utermohlen, R. (1995). An innovative teaching strategy: Using critical thinking to give students a guide to the future.(Eric Document Reproduction Services No. 389 702)
  • Robertson, J. F. & Rane-Szostak, D. (1996). Using dialogues to develop critical thinking skills: A practical approach. Journal of Adolescent & Adult Literacy, 39(7), 552-556.
  • Scriven, M. & Paul, R. (1996). Defining critical thinking: A draft statement for the National Council for Excellence in Critical Thinking. [On-line]. Available HTTP: http://www.criticalthinking.org/University/univlibrary/library.nclk
  • Strohm, S. M., & Baukus, R. A. (1995). Strategies for fostering critical thinking skills. Journalism and Mass Communication Educator, 50 (1), 55-62.
  • Underwood, M. K., & Wald, R. L. (1995). Conference-style learning: A method for fostering critical thinking with heart. Teaching Psychology, 22(1), 17-21.
  • Wade, C. (1995). Using writing to develop and assess critical thinking. Teaching of Psychology, 22(1), 24-28.

Other Reading

  • Bean, J. C. (1996). Engaging ideas: The professor's guide to integrating writing, critical thinking, & active learning in the classroom. Jossey-Bass.
  • Bernstein, D. A. (1995). A negotiation model for teaching critical thinking. Teaching of Psychology, 22(1), 22-24.
  • Carlson, E. R. (1995). Evaluating the credibility of sources. A missing link in the teaching of critical thinking. Teaching of Psychology, 22(1), 39-41.
  • Facione, P. A., Sanchez, C. A., Facione, N. C., & Gainen, J. (1995). The disposition toward critical thinking. The Journal of General Education, 44(1), 1-25.
  • Halpern, D. F., & Nummedal, S. G. (1995). Closing thoughts about helping students improve how they think. Teaching of Psychology, 22(1), 82-83.
  • Isbell, D. (1995). Teaching writing and research as inseparable: A faculty-librarian teaching team. Reference Services Review, 23(4), 51-62.
  • Jones, J. M. & Safrit, R. D. (1994). Developing critical thinking skills in adult learners through innovative distance learning. Paper presented at the International Conference on the practice of adult education and social development. Jinan, China. (Eric Document Reproduction Services No. ED 373 159)
  • Sanchez, M. A. (1995). Using critical-thinking principles as a guide to college-level instruction. Teaching of Psychology, 22(1), 72-74.
  • Spicer, K. L. & Hanks, W. E. (1995). Multiple measures of critical thinking skills and predisposition in assessment of critical thinking. Paper presented at the annual meeting of the Speech Communication Association, San Antonio, TX. (Eric Document Reproduction Services No. ED 391 185)
  • Terenzini, P. T., Springer, L., Pascarella, E. T., & Nora, A. (1995). Influences affecting the development of students' critical thinking skills. Research in Higher Education, 36(1), 23-39.

On the Internet

  • Carr, K. S. (1990). How can we teach critical thinking. Eric Digest. [On-line]. Available HTTP: http://ericps.ed.uiuc.edu/eece/pubs/digests/1990/carr90.html
  • The Center for Critical Thinking (1996). Home Page. Available HTTP: http://www.criticalthinking.org/University/
  • Ennis, Bob (No date). Critical thinking. [On-line], April 4, 1997. Available HTTP: http://www.cof.orst.edu/cof/teach/for442/ct.htm
  • Montclair State University (1995). Curriculum resource center. Critical thinking resources: An annotated bibliography. [On-line]. Available HTTP: http://www.montclair.edu/Pages/CRC/Bibliographies/CriticalThinking.html
  • No author, No date. Critical Thinking is ... [On-line], April 4, 1997. Available HTTP: http://library.usask.ca/ustudy/critical/
  • Sheridan, Marcia (No date). Internet education topics hotlink page. [On-line], April 4, 1997. Available HTTP: http://sun1.iusb.edu/~msherida/topics/critical.html

Walker Center for Teaching and Learning

  • 433 Library
  • Dept 4354
  • 615 McCallie Ave
  •   423-425-4188

ORIGINAL RESEARCH article

The problem-solving method: efficacy for learning and motivation in the field of physical education.

\nGhaith Ezeddine

  • 1 High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
  • 2 Research Unit of the National Sports Observatory (ONS), Tunis, Tunisia
  • 3 Research Laboratory: Education, Motricity, Sport and Health, EM2S, LR19JS01, University of Sfax, Sfax, Tunisia
  • 4 Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
  • 5 Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
  • 6 Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON, Canada
  • 7 High Institute of Sport and Physical Education of Ksar Saîd, University Manouba, UMA, Manouba, Tunisia

Background: In pursuit of quality teaching and learning, teachers seek the best method to provide their students with a positive educational atmosphere and the most appropriate learning conditions.

Objectives: The purpose of this study is to compare the effects of the problem-solving method vs. the traditional method on motivation and learning during physical education courses.

Methods: Fifty-three students ( M age 15 ± 0.1 years), in their 1st year of the Tunisian secondary education system, voluntarily participated in this study, and randomly assigned to a control or experimental group. Participants in the control group were taught using the traditional methods, whereas participants in the experimental group were taught using the problem-solving method. Both groups took part in a 10-hour experiment over 5 weeks. To measure students' situational motivation, a questionnaire was used to evaluate intrinsic motivation, identified regulation, external regulation, and amotivation during the first (T0) and the last sessions (T2). Additionally, the degree of students' learning was determined via video analyses, recorded at T0, the fifth (T1), and T2.

Results: Motivational dimensions, including identified regulation and intrinsic motivation, were significantly greater (all p < 0.001) in the experimental vs. the control group. The students' motor engagement in learning situations, during which the learner, despite a degree of difficulty performs the motor activity with sufficient success, increased only in the experimental group ( p < 0.001). The waiting time in the experimental group decreased significantly at T1 and T2 vs. T0 (all p < 0.001), with lower values recorded in the experimental vs. the control group at the three-time points (all p < 0.001).

Conclusions: The problem-solving method is an efficient strategy for motor skills and performance enhancement, as well as motivation development during physical education courses.

1. Introduction

The education of children is a sensitive and poignant subject, where the wellbeing of the child in the school environment is a key issue ( Ergül and Kargin, 2014 ). For this, numerous research has sought to find solutions to the problems of the traditional method, which focuses on the teacher as an instructor, giver of knowledge, arbiter of truth, and ultimate evaluator of learning ( Ergül and Kargin, 2014 ; Cunningham and Sood, 2018 ). From this perspective, a teachers' job is to present students with a designated body of knowledge in a predetermined order ( Arvind and Kusum, 2017 ). For them, learners are seen as people with “knowledge gaps” that need to be filled with information. In this method, teaching is conceived as the act of transmitting knowledge from point A (responsible for the teacher) to point B (responsible for the students; Arvind and Kusum, 2017 ). According to Novak (2010) , in the traditional method, the teacher is the one who provokes the learning.

The traditional method focuses on lecture-based teaching as the center of instruction, emphasizing delivery of program and concept ( Johnson, 2010 ; Ilkiw et al., 2017 ; Dickinson et al., 2018 ). The student listens and takes notes, passively accepts and receives from the teacher undifferentiated and identical knowledge ( Bi et al., 2019 ). Course content and delivery are considered most important, and learners acquire knowledge through exercise and practice ( Johnson et al., 1998 ). In the traditional method, academic achievement is seen as the ability of students to demonstrate, replicate, or convey this designated body of knowledge to the teacher. It is based on a transmissive model, the teacher contenting themselves with exchanging and transmitting information to the learner. Here, only the “knowledge” and “teacher” poles of the pedagogical triangle are solicited. The teacher teaches the students, who play the role of the spectator. They receive information without participating in its creation ( Perrenoud, 2003 ). For this, researchers invented a new student-centered method with effects on improving students' graphic interpretation skills and conceptual understanding of kinematic motion represent an area of contemporary interest ( Tebabal and Kahssay, 2011 ). Indeed, in order to facilitate the process of knowledge transfer, teachers should use appropriate methods targeted to specific objectives of the school curricula.

For instance, it has been emphasized that the effectiveness of any educational process as a whole relies on the crucial role of using a well-designed pedagogical (teaching and/or learning) strategy ( Kolesnikova, 2016 ).

Alternate to a traditional method of teaching, Ergül and Kargin (2014 ), proposed the problem-solving method, which represents one of the most common student-centered learning strategies. Indeed, this method allows students to participate in the learning environment, giving them the responsibility for their own acquisition of knowledge, as well as the opportunity for the understanding and structuring of diverse information.

For Cunningham and Sood (2018) , the problem-solving method may be considered a fundamental tool for the acquisition of new knowledge, notably learning transfer. Moreover, the problem-solving method is purportedly efficient for the development of manual skills and experiential learning ( Ergül and Kargin, 2014 ), as well as the optimization of thinking ability. Additionally, the problem-solving method allows learners to participate in the learning environment, while giving them responsibility for their learning and making them understand and structure the information ( Pohan et al., 2020 ). In this context, Ali (2019) reported that, when faced with an obstacle, the student will have to invoke his/her knowledge and use his/her abilities to “break the deadlock.” He/she will therefore make the most of his/her potential, but also share and exchange with his/her colleagues ( Ali, 2019 ). Throughout the process, the student will learn new concepts and skills. The role of the teacher is paramount at the beginning of the activity, since activities will be created based on problematic situations according to the subject and the program. However, on the day of the activity, it does not have the main role, and the teacher will guide learners in difficulty and will allow them to manage themselves most of the time ( Ali, 2019 ).

The problem-solving method encourages group discussion and teamwork ( Fidan and Tuncel, 2019 ). Additionally, in this pedagogical approach, the role of the teacher is a facilitator of learning, and they take on a much more interactive and less rebarbative role ( Garrett, 2008 ).

For the teaching method to be effective, teaching should consist of an ongoing process of making desirable changes among learners using appropriate methods ( Ayeni, 2011 ; Norboev, 2021 ). To bring about positive changes in students, the methods used by teachers should be the best for the subject to be taught ( Adunola et al., 2012 ). Further, suggests that teaching methods work effectively, especially if they meet the needs of learners since each learner interprets and answers questions in a unique way. Improving problem-solving skills is a primary educational goal, as is the ability to use reasoning. To acquire this skill, students must solve problems to learn mathematics and problem-solving ( Hu, 2010 ); this encourages the students to actively participate and contribute to the activities suggested by the teacher. Without sufficient motivation, learning goals can no longer be optimally achieved, although learners may have exceptional abilities. The method of teaching employed by the teachers is decisive to achieve motivational consequences in physical education students ( Leo et al., 2022 ). Pérez-Jorge et al. (2021 ) posited that given we now live in a technological society in which children are used to receiving a large amount of stimuli, gaining and maintaining their attention and keeping them motivated at school becomes a challenge for teachers.

Fenouillet (2012) stated that academic motivation is linked to resources and methods that improve attention for school learning. Furthermore, Rolland (2009) and Bessa et al. (2021) reported a link between a learner's motivational dynamics and classroom activities. The models of learning situations, where the student is the main actor, directly refers to active teaching methods, and that there is a strong link between motivation and active teaching ( Rossa et al., 2021 ). In the same context, previous reports assert that the motivation of students in physical education is an important factor since the intra-individual motivation toward this discipline is recognized as a major determinant of physical activity for students ( Standage et al., 2012 ; Luo, 2019 ; Leo et al., 2022 ). Further, extensive research on the effectiveness of teaching methods shows that the quality of teaching often influences the performance of learners ( Norboev, 2021 ). Ayeni (2011) reported that education is a process that allows students to make changes desirable to achieve specific results. Thus, the consistency of teaching methods with student needs and learning influences student achievement. This has led several researchers to explore the impact of different teaching strategies, ranging from traditional methods to active learning techniques that can be used such as the problem-solving method ( Skinner, 1985 ; Darling-Hammond et al., 2020 ).

In the context of innovation, Blázquez (2016 ) emphasizes the importance of adopting active methods and implementing them as the main element promoting the development of skills, motivation and active participation. Pedagogical models are part of the active methods which, together with model-based practice, replace traditional teaching ( Hastie and Casey, 2014 ; Casey et al., 2021 ). Thus, many studies have identified pedagogical models as the most effective way to place students at the center of the teaching-learning process ( Metzler, 2017 ), making it possible to assess the impact of physical education on learning students ( Casey, 2014 ; Rivera-Pérez et al., 2020 ; Manninen and Campbell, 2021 ). Since each model is designed to focus on a specific program objective, each model has limitations when implemented in isolation ( Bunker and Thorpe, 1982 ; Rivera-Pérez et al., 2020 ). Therefore, focusing on developing students' social and emotional skills and capacities could help them avoid failure in physical education ( Ang and Penney, 2013 ). Thus, the current emergence of new pedagogical models goes with their hybridization with different methods, which is a wave of combinations proposed today as an innovative pedagogical strategy. The incorporation of this type of method in the current education system is becoming increasingly important because it gives students a greater role, participation, autonomy and self-regulation, and above all it improves their motivation ( Puigarnau et al., 2016 ). The teaching model of personal and social responsibility, for example, is closely related to the sports education model because both share certain approaches to responsibility ( Siedentop et al., 2011 ). One of the first studies to use these two models together was Rugby ( Gordon and Doyle, 2015 ), which found significant improvements in student behavior. Also, the recent study by Menendez and Fernandez-Rio (2017) on educational kickboxing.

Previous studies have indicated that hybridization can increase play, problem solving performance and motor skills ( Menendez and Fernandez-Rio, 2017 ; Ward et al., 2021 ) and generate positive psychosocial consequences, such as pleasure, intention to be physically active and responsibility ( Dyson and Grineski, 2001 ; Menendez and Fernandez-Rio, 2017 ).

But despite all these research results, the picture remains unclear, and it remains unknown which method is more effective in improving students' learning and motivation. Given the lack of published evidence on this topic, the aim of this study was to compare the effects of problem-solving vs. the traditional method on students' motivation and learning.

We hypothesized would that the problem-solving method would be more effective in improving students' motivation and learning better than the traditional method.

2. Materials and method

2.1. participants.

Fifty-three students, aged 15–16 ( M age 15 ± 0.1 years), in their 1st year of the Tunisian secondary education system, voluntarily participated in this study. All participants were randomly chosen. Repeating students, those who practice handball activity in civil/competitive/amateur clubs or in the high school sports association, and students who were absent, even for one session, were excluded. The first class consisted of 30 students (16 boys and 14 girls), who represented the experimental group and followed basic courses on a learning method by solving problems. The second class consisted of 23 students (10 boys and 13 girls), who represented the control group and followed the traditional teaching method. The total duration was spread over 5 weeks, or two sessions per week and each session lasted 50 min.

University research ethics board approval (CPPSUD: 0295/2021) was obtained before recruiting participants who were subsequently informed of the nature, objective, methodology, and constraints. Teacher, school director, parental/guardian, and child informed consent was obtained prior to participation in the study.

2.2. Procedure

Before the start of the experiment, the participants were familiarized with the equipment and the experimental protocol in order to ensure a good learning climate. For this and to mitigate the impact of the observer and the cameras on the students, the two researchers were involved prior to the data collection in a week of familiarization by making test recordings with the classes concerned.

An approach of a teaching cycle consisting of 10 sessions spread over 5 weeks, amounting to two sessions per week. Physical education classes were held in the morning from 8 a.m. to 9 a.m., with a single goal for each session that lasted 50 min. The cyclic programs were produced by the teacher responsible for carrying out the experiment with 18 years of service. To do this, the students had the same lessons with the same objectives, only pedagogy that differs: the experimental group worked using problem-solving pedagogy, while the control group was confronted with traditional pedagogy. The sessions took place in a handball field 40 m long and 20 m wide. Examples of training sessions using the problem-solving pedagogy and the traditional pedagogy are presented in Table 1 . In addition, a motivation questionnaire, the Situational Motivation Scale (SIMS; Guay et al., 2000 ), was administered to learners at the end of the session (i.e., in the beginning, and end of the cycle). Each student answered the questions alone and according to their own ideas. This questionnaire was taken in a classroom to prevent students from acting abnormally during the study. It lasted for a maximum of 10 min.

www.frontiersin.org

Table 1 . Example of activities for the different sessions.

Two diametrically opposed cameras were installed so to film all the movements and behaviors of each student and teacher during the three sessions [(i) test at the start of the cycle (T0), (ii) in the middle of the cycle (T1), and (iii) test at the end of the cycle (T2)]. These sessions had the same content and each consisted of four phases: the getting started, the warm-up, the work up (which consisted of three situations: first, the work was goes up the ball to two to score in the goal following a shot. Second, the same principle as the previous situation but in the presence of a defender. Finally, third, a match 7 ≠ 7), and the cooling down These recordings were analyzed using a Learning Time Analysis System grid (LTAS; Brunelle et al., 1988 ). This made it possible to measure individual learning by coding observable variables of the behavior of learners in a learning situation.

2.3. Data collection and analysis

2.3.1. the motivation questionnaire.

In this study, in order to measure the situational motivation of students, the situational motivation scale (SIMS; Guay et al., 2000 ), which used. This questionnaire assesses intrinsic motivation, identified regulation, external regulation and amotivation. SIMS has demonstrated good reliability and factor validity in the context of physical education in adolescents ( Lonsdale et al., 2011 ). The participants received exact instructions from the researchers in accordance with written instructions on how to conduct the data collection. Participants completed the SIMS anonymously at the start of a physical education class. All students had the opportunity to write down their answers without being observed and to ask questions if anything was unclear. To minimize the tendency to give socially desirable answers, they were asked to answer as honestly as possible, with the confidence that the teacher would not be able to read their answers and that their grades would not be affected by how they responded. The SIMS questionnaire was filled at T0 and T2. This scale is made up of 16 items divided into four dimensions: intrinsic motivation, identified regulation, external regulation and amotivation. Each item is rated on a 7-point Likert scale ranging from 1 (which is the weakest factor) “not at all” to 7 (which is the strongest factor) “exactly matches.”

In order to assess the internal consistency of the scales, a Cronbach alpha test was conducted ( Cronbach, 1951 ). The internal consistency of the scales was acceptable with reliability coefficients ranging from 0.719 to 0.87. The coefficient of reliability was 0.8.

In the present study, Cronbach's alphas were: intrinsic motivation = 0.790; regulation identified = 0.870; external regulation = 0.749; and amotivation = 0.719.

2.3.2. Camcorders

The audio-visual data collection was conducted using two Sony camcorders (Model; Handcam 4K) with a wireless microphone with a DJ transmitter-receiver (VHF 10HL F4 Micro HF) with a range of 80 m ( Maddeh et al., 2020 ). The collection took place over a period of 5 weeks, with three captures for each class (three sessions of 50 min for each at T0, T1, and T2). Two researchers were trained in the procedures and video capture techniques. The cameras were positioned diagonally, in order to film all the behavior of the students and teacher on the set.

2.3.3. The Learning Time Analysis System (LTAS)

To measure the degree of student learning, the analysis of videos recorded using the LTAS grid by Brunelle et al. (1988) was used, at T0, T1, and T2. This observation system with predetermined categories uses the technique of observation by small intervals (i.e., 6 s) and allows to measure individual learning by coding observable variables of their behaviors when they have been in a learning situation. This grid also permits the specification of the quantity and quality with which the participants engaged in the requested work and was graded, broadly, on two characteristics: the type of situation offered to the group by the teacher and the behavior of the target participant. The situation offered to the group was subdivided into three parts: preparatory situations; knowledge development situations, and motor development situations.

The observations and coding of behaviors are carried out “at intervals.” This technique is used extensively in research on behavior analysis. The coder observes the teaching situation and a particular student during each interval ( Brunelle et al., 1988 ). It then makes a decision concerning the characteristic of the observed behavior. The 6-s observation interval is followed by a coding interval of 6 s too. A cassette tape recorder is used to regulate the observation and recording intervals. It is recorded for this purpose with the indices “observe” and “code” at the start of each 6-s period. During each coding unit, the observer answered the following questions: What is the type of situation in which the class group finds itself? If the class group is in a learning situation proper, in what form of commitment does the observed student find himself? The abbreviations representing the various categories of behavior have been entered in the spaces which correspond to them. The coder was asked to enter a hyphen instead of the abbreviation when the same categories of behavior follow one another in consecutive intervals ( Brunelle et al., 1988 ).

During the preparatory period, the following behaviors were identified and analyzed:

- Deviant behavior: The student adopts a behavior incompatible with a listening attitude or with the smooth running of the preparatory situations.

- Waiting time: The student is waiting without listening or observing.

- Organized during: The student is involved in a complementary activity that does not represent a contribution to learning (e.g., regaining his place in a line, fetching a ball that has just left the field, replacing a piece of equipment).

During the motor development situations, the following behaviors were identified and analyzed:

- Motor engagement 1: The participant performs the motor activity with such easy that it can be inferred that their actions have little chance to engage in a learning process.

- Motor engagement 2: The participant-despite a certain degree of difficulty, performs the motor activity with sufficient success, which makes it possible to infer that they are in the process of learning.

- Motor engagement 3: The participant performs the motor activity with such difficulty that their efforts have very little chance of being part of a learning process.

2.4. Statistical analysis

Statistical tests were performed using statistical software 26.0 for windows (SPSS, Inc, Chicago, IL, USA). Data are presented in text and tables as means ± standard deviations and in figures as means and standard errors. Once the normal distribution of data was confirmed by the Shapiro-Wilk W -test, parametric tests were performed. Analysis of the results was performed using a mixed 2-way analysis of variance (ANOVA): Groups × Time with repeated measures.

For the learning parameters, the ANOVA took the following form: 2 Groups (Control Group vs. Experimental Group) × 3 Times (T0, T1, and T2).

For the dimensions of motivation, the ANOVA took the following form: 2 Groups (Control Group vs. Experimental Group) × 2 Time (T0 vs. T2).

In instances where the ANOVA showed a significant effect, a Bonferroni post-hoc test was applied in order to compare the experimental data in pairs, otherwise by an independent or paired Student's T -test. Effect sizes were calculated as partial eta-squared η p 2 to estimate the meaningfulness of significant findings, where η p 2 values of 0.01, 0.06, and 0.13 represent small, moderate, and large effect sizes, respectively ( Lakens, 2013 ). All observed differences were considered statistically significant for a probability threshold lower than p < 0.05.

Table 2 shows the results of learning variables during the preparatory and the development learning periods at T0, T1, and T2, in the control group and the experimental group.

www.frontiersin.org

Table 2 . Comparison of learning variables using two teaching methods in physical education.

The analysis of variance of two factors with repeated measures showed a significant effect of group, learning, and group learning interaction for the deviant behavior. The post-hoc test revealed significantly less frequent deviant behaviors in the experimental than in the control group at T0, T1, and T2 (all p < 0.001). Additionally, the deviant behavior decreased significantly at T1 and T2 compared to T0 for both groups (all p < 0.001).

For appropriate engagement, there were no significant group effect, a significant learning effect, and a significant group learning interaction effect. The post-hoc test revealed that compared to T0, Appropriate engagement recorded at T1 and T2 increased significantly ( p = 0.032; p = 0.031, respectively) in the experimental group, whilst it decreased significantly in the control group ( p < 0.001). Additionally, Appropriate engagement was higher in the experimental vs. control group at T1 and T2 (all p < 0.001).

For waiting time, a significant interaction in terms of group effect, learning, and group learning was found. The post-hoc test revealed that waiting time was higher at T1 and T2 vs. T0 (all p < 0.001) in the control group. In addition, waiting time in the experimental group decreased significantly at T1 and T2 vs. T0 (all p < 0.001), with higher values recorded at T2 vs. T1 ( p = 0.025). Additionally, lower values were recorded in the experimental group vs. the control group at the three-time points (all p < 0.001).

For Motor engagement 2, a significant group, learning, and group-learning interaction effect was noted. The post-hoc test revealed that Motor engagement 2 increased significantly in both groups at T1 ( p < 0.0001) and T2 ( p < 0.0001) vs. T0 ( p = 0.045), with significantly higher values recorded in the experimental group at T1 and T2.

Regarding Motor engagement 3, a non-significant group effect was reported. Contrariwise, a significant learning effect and group learning interaction was reported ( Table 1 ). The post-hoc test revealed a significant decrease in the control group and the experimental group at T1 ( p = 0.294) at T2 ( p = 0.294) vs. T0 ( p = 0.0543). In addition, a non-significant difference between the two groups was found.

A significant group and learning effect was noted for the organized during, and a non-significant group learning interaction. For organized during, the paired Student T -test showed a significant decrease in the control group and the experimental group (all p < 0.001). The independent Student T -test revealed a non-significant difference between groups at the three-time points.

Results of the motivational dimensions in the control group and the experimental group recorded at T0 and T2 are presented in Table 3 .

www.frontiersin.org

Table 3 . Comparison of the four motivational dimensions in two teaching methods in physical education.

For intrinsic motivation, a significant group effect and group learning interaction and also a non-significant learning effect was found. The post-hoc test indicated that the intrinsic motivation decreased significantly in the control group ( p = 0.029), whilst it increased in the experimental group ( p = 0.04). Additionally, the intrinsic motivation of the experimental group was higher at T0 ( p = 0.026) and T2 ( p < 0.001) compared to that of the control group.

For the identified regulation, a significant group effect, a non-significant learning effect and group learning interaction were reported. The paired Student's T -test revealed that from T0 to T1, the identified motivation increased significantly only in the experimental group ( p = 0.022), while it remained unchanged in the control group. The independent Student's T -test revealed that the identified regulation recorded in the experimental group at T0 ( p = 0.012) and T2 ( p < 0.001) was higher compared to that of the control group.

The external regulation presents a significant group effect. In addition, a non-significant learning effect and group learning interaction were reported. The paired Student's T -test showed that the external regulation decreased significantly in the experimental group ( p = 0.038), whereas it remained unchanged in the control group. Further, the independent Student's T -test revealed that the external regulation recorded at T2 was higher in the control group vs. the experimental group ( p < 0.001).

Relating to amotivation, results showed a significant group effect. Furthermore, a non-significant learning effect and group learning interaction were reported. The paired Student's T -test showed that, from T0 to T2, amotivation decreased significantly in the experimental group ( p = 0.011) and did not change in the control group. The independent Student T -test revealed that amotivation recorded at T2 was lower in the experimental compared to the control group ( p = 0.002).

4. Discussion

The main purpose of this study was to compare the effects of the problem-solving vs. traditional method on motivation and learning during physical education courses. The results revealed that the problem-solving method is more effective than the traditional method in increasing students' motivation and improving their learning. Moreover, the results showed that mean wait times and deviant behaviors decreased using the problem-solving method. Interestingly, the average time spent on appropriate engagement increased using the problem-solving method compared to the traditional method. When using the traditional method, the average wait times increased and, as a result, the time spent on appropriate engagement decreased. Then, following the decrease in deviant behaviors and waiting times, an increase in the time spent warming up was evident (i.e., appropriate engagement). Indeed, there was an improvement in engagement time using the problem-solving method and a decrease using the traditional method. On the other hand, there was a decrease in motor engagement 3 in favor of motor engagement 2. Indeed, it has been shown that the problem-solving method has been used in the learning process and allows for its improvement ( Docktor et al., 2015 ). In addition, it could also produce better quality solutions and has higher scores on conceptual and problem-solving measures. It is also a good method for the learning process to enhance students' academic performance ( Docktor et al., 2015 ; Ali, 2019 ). In contrast, the traditional method limits the ability of teachers to reach and engage all students ( Cook and Artino, 2016 ). Furthermore, it produces passive learning with an understanding of basic knowledge which is characterized by its weakness ( Goldstein, 2016 ). Taken together, it appears that the problem-solving method promotes and improves learning more than the traditional method.

It should be acknowledged that other factors, such as motivation, could influence learning. In this context, our results showed that the method of problem-solving could improve the motivation of the learners. This motivation includes several variables that change depending on the situation, namely the intrinsic motivation that pushes the learner to engage in an activity for the interest and pleasure linked to the practice of the latter ( Komarraju et al., 2009 ; Guiffrida et al., 2013 ; Chedru, 2015 ). The student, therefore, likes to learn through problem-solving and neglects that of the traditional method. These results are concordant with others ( Deci and Ryan, 1985 ; Chedru, 2015 ; Ryan and Deci, 2020 ). Regarding the three forms of extrinsic motivation: first, extrinsic motivation by an identified regulation which manifests itself in a high degree of self-determination where the learner engages in the activity because it is important for him ( Deci and Ryan, 1985 ; Chedru, 2015 ). This explains the significant difference between the two groups. Then, the motivation by external regulation which is characterized by a low degree of self-determination such as the behavior of the learner is manipulated by external circumstances such as obtaining rewards or the removal of sanctions ( Deci and Ryan, 1985 ; Chedru, 2015 ). For this, the means of this variable decreased for the experimental group which is intrinsically motivated. He does not need any reward to work and is not afraid of punishment because he is self-confident. Third, amotivation is at the opposite end of the self-determination continuum. Unmotivated students are the most likely to feel negative emotions ( Ratelle et al., 2007 ; David, 2010 ), to have low self-esteem ( Deci and Ryan, 1995 ), and who attempts to abandon their studies ( Vallerand et al., 1997 ; Blanchard et al., 2005 ). So, more students are motivated by external regulation or demotivated, less interest they show and less effort they make, and more likely they are to fail ( Grolnick et al., 1991 ; Miserandino, 1996 ; Guay et al., 2000 ; Blanchard et al., 2005 ).

It is worth noting that there is a close link between motivation and learning ( Bessa et al., 2021 ; Rossa et al., 2021 ). Indeed, when the learner's motivation is high, so will his learning. However, all this depends on the method used ( Norboev, 2021 ). For example, the method of problem-solving increase motivation more than the traditional method, as evidenced by several researchers ( Parish and Treasure, 2003 ; Artino and Stephens, 2009 ; Kim and Frick, 2011 ; Lemos and Veríssimo, 2014 ).

Given the effectiveness of the problem-solving method in improving students' learning and motivation, it should be used during physical education teaching. This could be achieved through the organization of comprehensive training programs, seminars, and workshops for teachers so to master and subsequently be able to use the problem-solving method during physical education lessons.

Despite its novelty, the present study suffers from a few limitations that should be acknowledged. First, a future study, consisting of a group taught using the mixed method would preferable so to better elucidate the true impact of this teaching and learning method. Second, no gender and/or age group comparisons were performed. This issue should be addressed in future investigations. Finally, the number of participants is limited. This may be due to working in a secondary school where the number of students in a class is limited to 30 students. Additionally, the number of participants fell to 53 after excluding certain students (exempted, absent for a session, exercising in civil clubs or member of the school association). Therefore, to account for classes of finite size, a cluster-based trial would be beneficial in the future. Moreover, future studies investigating the effect of the active method in reducing some behaviors (e.g., disruptive behaviors) and for the improvement of pupils' attention are warranted.

5. Conclusion

There was an improvement in student learning in favor of the problem-solving method. Additionally, we found that the motivation of learners who were taught using the problem-solving method was better than that of learners who were educated by the traditional method.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Ethics statement

University Research Ethics Board approval was obtained before recruiting participants who were subsequently informed of the nature, objective, methodology, and constraints. Teacher, school director, parental/guardian, and child informed consent was obtained prior to participation in the study. In addition, exclusion criteria included; the practice of handball activity in civil/competitive/amateur clubs or in the high school sports association. Written informed consent to participate in this study was provided by the participants' legal guardian/next of kin.

Author contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Acknowledgments

Special thanks for all students and physical education teaching staff from the 15 November 1955 Secondary School, who generously shared their time, experience, and materials for the proposes of this study.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer MJ declared a shared affiliation, with no collaboration, with the authors GE, NS, LM, and KT to the handling editor at the time of review.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Adunola, O., Ed, B., and Adeniran, A. (2012). The Impact of Teachers' Teaching Methods on the Academic Performance of Primary School Pupils . Ogun: Ego Booster Books.

Google Scholar

Ali, S. S. (2019). Problem based learning: A student-centered approach. Engl. Lang. Teach . 12, 73. doi: 10.5539/elt.v12n5p73

CrossRef Full Text | Google Scholar

Ang, S. C., and Penney, D. (2013). Promoting social and emotional learning outcomes in physical education: Insights from a school-based research project in Singapore. Asia-Pac. J. Health Sport Phys. Educ . 4, 267–286. doi: 10.1080/18377122.2013.836768

Artino, A. R., and Stephens, J. M. (2009). Academic motivation and self-regulation: A comparative analysis of undergraduate and graduate students learning online. Internet. High. Educ. 12, 146–151. doi: 10.1016/j.iheduc.2009.02.001

Arvind, K., and Kusum, G. (2017). Teaching approaches, methods and strategy. Sch. Res. J. Interdiscip. Stud. 4, 6692–6697. doi: 10.21922/srjis.v4i36.10014

Ayeni, A. J. (2011). Teachers' professional development and quality assurance in Nigerian secondary schools. World J. Educ. 1, 143. doi: 10.5430/wje.v1n2p143

Bessa, C., Hastie, P., Rosado, A., and Mesquita, I. (2021). Sport education and traditional teaching: Influence on students' empowerment and self-confidence in high school physical education classes. Sustainability 13, 578. doi: 10.3390/su13020578

Bi, M., Zhao, Z., Yang, J., and Wang, Y. (2019). Comparison of case-based learning and traditional method in teaching postgraduate students of medical oncology. Med. Teach . 4, 1124–1128. doi: 10.1080/0142159X.2019.1617414

PubMed Abstract | CrossRef Full Text | Google Scholar

Blanchard, C., Pelletier, L., Otis, N., and Sharp, E. (2005). Role of self-determination and academic ability in predicting school absences and intention to drop out. J. Educ. Sci. 30, 105–123. doi: 10.7202/011772ar

Blázquez, D. (2016).Métodos de enseñanza en Educación Física. Enfoques innovadores para la enseñanza de competencias . Barcelona: Inde Publisher.

Brunelle, J., Drouin, D., Godbout, P., and Tousignant, M. (1988). Supervision of physical activity intervention. Montreal, Canada: G. Morin, Dl. Open J. Soc. Sci. 8.

Bunker, D., and Thorpe, R. (1982). A model for the teaching of games in secondary schools. Bull. Phys. Educ . 18, 5–8.

Casey, A. (2014). Models-based practice: Great white hope or white elephant? Phys. Educ. Sport Pedagog. 19, 18–34. doi: 10.1080/17408989.2012.726977

Casey, A., MacPhail, A., Larsson, H., and Quennerstedt, M. (2021). Between hope and happening: Problematizing the M and the P in models-based practice. Phys. Educ. Sport Pedagog. 26, 111–122. doi: 10.1080/17408989.2020.1789576

Chedru, M. (2015). Impact of motivation and learning styles on the academic performance of engineering students. J. Educ. Sci. 41, 457–482. doi: 10.7202/1035313ar

Cook, D. A., and Artino, A. R. (2016). Motivation to learn: An overview of contemporary theories. J. Med. Educ . 50, 997–1014. doi: 10.1111/medu.13074

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika. J. 16, 297–334. doi: 10.1007/BF02310555

Cunningham, J., and Sood, K. (2018). How effective are working memory training interventions at improving maths in schools: a study into the efficacy of working memory training in children aged 9 and 10 in a junior school?. Education 46, 174–187. doi: 10.1080/03004279.2016.1210192

Darling-Hammond, L., Flook, L., Cook-Harvey, C., Barron, B., and Osher, D. (2020). Implications for educational practice of the science of learning and development. Appl. Dev. Sci. 24, 97–140. doi: 10.1080/10888691.2018.1537791

David, A. (2010). Examining the relationship of personality and burnout in college students: The role of academic motivation. E. M. E. Rev. 1, 90–104.

Deci, E., and Ryan, R. (1985). Intrinsic motivation and self-determination in human behavior. Perspect. Soc. Psychol . 2271, 7. doi: 10.1007/978-1-4899-2271-7

Deci, E. L., and Ryan, R. M. (1995). “Human autonomy,” in Efficacy, Agency, and Self-Esteem (Boston, MA: Springer).

Dickinson, B. L., Lackey, W., Sheakley, M., Miller, L., Jevert, S., and Shattuck, B. (2018). Involving a real patient in the design and implementation of case-based learning to engage learners. Adv. Physiol. Educ. 42, 118–122. doi: 10.1152/advan.00174.2017

Docktor, J. L., Strand, N. E., Mestre, J. P., and Ross, B. H. (2015). Conceptual problem solving in high school. Phys. Rev. ST Phys. Educ. Res. 11, 20106. doi: 10.1103/PhysRevSTPER.11.020106

Dyson, B., and Grineski, S. (2001). Using cooperative learning structures in physical education. J. Phys. Educ. Recreat. Dance. 72, 28–31. doi: 10.1080/07303084.2001.10605831

Ergül, N. R., and Kargin, E. K. (2014). The effect of project based learning on students' science success. Procedia. Soc. Behav. Sci. 136, 537–541. doi: 10.1016/j.sbspro.2014.05.371

Fenouillet, F. (2012). Les théories de la motivation . Psycho Sup : Dunod.

Fidan, M., and Tuncel, M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. Comput. Educ .142, 103635. doi: 10.1016/j.compedu.2019.103635

Garrett, T. (2008). Student-centered and teacher-centered classroom management: A case study of three elementary teachers. J. Classr. Interact. 43, 34–47.

Goldstein, O. A. (2016). Project-based learning approach to teaching physics for pre-service elementary school teacher education students. Bevins S, éditeur. Cogent. Educ. 3, 1200833. doi: 10.1080/2331186X.2016.1200833

Gordon, B., and Doyle, S. (2015). Teaching personal and social responsibility and transfer of learning: Opportunities and challenges for teachers and coaches. J. Teach. Phys. Educ. 34, 152–161. doi: 10.1123/jtpe.2013-0184

Grolnick, W. S., Ryan, R. M., and Deci, E. L. (1991). Inner resources for school achievement: Motivational mediators of children's perceptions of their parents. J. Educ. Psychol . 83, 508–517. doi: 10.1037/0022-0663.83.4.508

Guay, F., Vallerand, R. J., and Blanchard, C. (2000). On the assessment of situational intrinsic and extrinsic motivation: The Situational Motivation Scale (SIMS). Motiv. Emot . 24, 175–213. doi: 10.1023/A:1005614228250

Guiffrida, D., Lynch, M., Wall, A., and Abel, D. (2013). Do reasons for attending college affect academic outcomes? A test of a motivational model from a self-determination theory perspective. J. Coll. Stud. Dev. 54, 121–139. doi: 10.1353/csd.2013.0019

Hastie, P. A., and Casey, A. (2014). Fidelity in models-based practice research in sport pedagogy: A guide for future investigations. J. Teach. Phys. Educ . 33, 422–431. doi: 10.1123/jtpe.2013-0141

Hu, W. (2010). Creative scientific problem finding and its developmental trend. Creat. Res. J. 22, 46–52. doi: 10.1080/10400410903579551

Ilkiw, J. E., Nelson, R. W., Watson, J. L., Conley, A. J., Raybould, H. E., Chigerwe, M., et al. (2017). Curricular revision and reform: The process, what was important, and lessons learned. J. Vet. Med. Educ . 44, 480–489. doi: 10.3138/jvme.0316-068R

Johnson, A. P. (2010). Making Connections in Elementary and Middle School Social Studies. 2nd Edn. London: SAGE.

Johnson, D. W., Johnson, R. T., and Smith, K. A. (1998). Active Learning: Cooperation in the College Classroom. 2nd Edn. Edina, MN: Interaction Press.

Kim, K. J., and Frick, T. (2011). Changes in student motivation during online learning. J. Educ. Comput. 44, 23. doi: 10.2190/EC.44.1.a

Kolesnikova, I. (2016). Combined teaching method: An experimental study. World J. Educ. 6, 51–59. doi: 10.5430/wje.v6n6p51

Komarraju, M., Karau, S. J., and Schmeck, R. R. (2009). Role of the Big Five personality traits in predicting college students' academic motivation and achievement. Learn. Individ. Differ. 19, 47–52. doi: 10.1016/j.lindif.2008.07.001

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t -tests and ANOVAs. Front. Psychol . 4, 863. doi: 10.3389/fpsyg.2013.00863

Lemos, M. S., and Veríssimo, L. (2014). The relationships between intrinsic motivation, extrinsic motivation, and achievement, along elementary school. Procedia. Soc. Behav. Sci . 112, 930–938. doi: 10.1016/j.sbspro.2014.01.1251

Leo, M. F., Mouratidis, A., Pulido, J. J., López-Gajardo, M. A., and Sánchez-Oliva, D. (2022). Perceived teachers' behavior and students' engagement in physical education: the mediating role of basic psychological needs and self-determined motivation. Phys. Educ. Sport Pedagogy. 27, 59–76. doi: 10.1080/17408989.2020.1850667

Lonsdale, C., Sabiston, C., Taylor, I., and Ntoumanis, N. (2011). Measuring student motivation for physical education: Examining the psychometric properties of the Perceived Locus of Causality Questionnaire and the Situational Motivation Scale. Psychol. Sport. Exerc . 12, 284–292. doi: 10.1016/j.psychsport.2010.11.003

Luo, Y. J. (2019). The influence of problem-based learning on learning effectiveness in students' of varying learning abilities within physical education. Innov. Educ. Teach. Int. 56, 3–13. doi: 10.1080/14703297.2017.1389288

Maddeh, T., Amamou, S., Desbiens, J., and françois Souissi, N. (2020). The management of disruptive behavior of secondary school students by Tunisian trainee teachers in physical education: Effects of a training program in the prevention and management of indiscipline. J. Educ. Fac . 4, 323–344. doi: 10.34056/aujef.674931

Manninen, M., and Campbell, S. (2021). The effect of the sport education model on basic needs, intrinsic motivation and prosocial attitudes: A systematic review and multilevel meta-Analysis. Eur. Phys. Educ. Rev . 28, 76–99. doi: 10.1177/1356336X211017938

Menendez, J. I., and Fernandez-Rio, J. (2017). Hybridising sport education and teaching for personal and social responsibility to include students with disabilities. Eur. J. Spec. Needs Educ. 32, 508–524 doi: 10.1080/08856257.2016.1267943

Metzler, M. (2017). Instructional Models in Physical Education . London: Routledge.

Miserandino, M. (1996). Children who do well in school: Individual differences in perceived competence and autonomy in above-average children. J. Educ. Psychol . 88, 203–214. doi: 10.1037/0022-0663.88.2.203

Norboev, N. N. (2021). Theoretical aspects of the influence of motivation on increasing the efficiency of physical education. Curr. Res. J. Pedagog . 2, 247–252. doi: 10.37547/pedagogics-crjp-02-10-44

Novak, D. J. (2010). Learning, creating, and using knowledge: Concept maps as facilitative tools in schools and corporations. J. E-Learn. Knowl. Soc . 6, 21–30. doi: 10.20368/1971-8829/441

Parish, L. E., and Treasure, D. C. (2003). Physical activity and situational motivation in physical education: Influence of the motivational climate and perceived ability. Res. Q. Exerc. Sport. 74, 173. doi: 10.1080/02701367.2003.10609079

Pérez-Jorge, D., González-Dorta, D., Del Carmen Rodríguez-Jiménez, D., and Fariña-Hernández, L. (2021). Problem-solving teacher training, the effect of the ProyectaMates Programme in Tenerife. International Educ . 49, 777–7791. doi: 10.1080/03004279.2020.1786427

Perrenoud, P. (2003). Qu'est-ce qu'apprendre. Enfances Psy . 4, 9–17. doi: 10.3917/ep.024.0009

Pohan, A., Asmin, A., and Menanti, A. (2020). The effect of problem based learning and learning motivation of mathematical problem solving skills of class 5 students at SDN 0407 Mondang. BirLE . 3, 531–539. doi: 10.33258/birle.v3i1.850

Puigarnau, S., Camerino, O., Castañer, M., Prat, Q., and Anguera, M. T. (2016). El apoyo a la autonomía en practicantes de centros deportivos y de fitness para aumentar su motivación. Rev. Int. de Cienc. del deporte. 43, 48–64. doi: 10.5232/ricyde2016.04303

Ratelle, C. F., Guay, F., Vallerand, R. J., Larose, S., and Senécal, C. (2007). Autonomous, controlled, and amotivated types of academic motivation: A person-oriented analysis. J. Educ. Psychol. 99, 734–746. doi: 10.1037/0022-0663.99.4.734

Rivera-Pérez, S., Fernandez-Rio, J., and Gallego, D. I. (2020). Effects of an 8-week cooperative learning intervention on physical education students' task and self-approach goals, and Emotional Intelligence. Int. J. Environ. Res. Public Health . 18, 61. doi: 10.3390/ijerph18010061

Rolland, V. (2009). Motivation in the School Context . 5th Edn . Belguim: De Boeck Superior, 218.

Rossa, R., Maulidiah, R. H., and Aryni, Y. (2021). The effect of problem solving technique and motivation toward students' writing skills. J. Pena. Edukasi. 8, 43–54. doi: 10.54314/jpe.v8i1.654

Ryan, R., and Deci, E. (2020). Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemp. Educ. Psychol . 61, 101860. doi: 10.1016/j.cedpsych.2020.101860

Siedentop, D., Hastie, P. A., and Van Der Mars, H. (2011). Complete Guide to Sport Education, 2nd Edn. Champaign, IL: Human Kinetics.

Skinner, B. F. (1985). Cognitive science and behaviourism. Br. J. Psychol. 76, 291–301. doi: 10.1111/j.2044-8295.1985.tb01953.x

Standage, M., Gillison, F. B., Ntoumanis, N., and Treasure, D. C. (2012). Predicting students' physical activity and health-related well-being: a prospective cross-domain investigation of motivation across school physical education and exercise settings. J. Sport. Exerc. Psychol . 34, 37–60. doi: 10.1123/jsep.34.1.37

Tebabal, A., and Kahssay, G. (2011). The effects of student-centered approach in improving students' graphical interpretation skills and conceptual understanding of kinematical motion. Lat. Am. J. Phys. Educ. 5, 9.

Vallerand, R. J., Fbrtier, M. S., and Guay, F. (1997). Self-determination and persistence in a real-life setting toward a motivational model of high school dropout. J. Pers. Soc. Psychol. 2, 1161–1176. doi: 10.1037/0022-3514.72.5.1161

Ward, P., Mitchell, M. F., van der Mars, H., and Lawson, H. A. (2021). Chapter 3: PK+12 School physical education: conditions, lessons learned, and future directions. J. Teach. Phys. Educ. 40, 363–371. doi: 10.1123/jtpe.2020-0241

Keywords: problem-solving method, traditional method, motivation, learning, students

Citation: Ezeddine G, Souissi N, Masmoudi L, Trabelsi K, Puce L, Clark CCT, Bragazzi NL and Mrayah M (2023) The problem-solving method: Efficacy for learning and motivation in the field of physical education. Front. Psychol. 13:1041252. doi: 10.3389/fpsyg.2022.1041252

Received: 10 September 2022; Accepted: 15 December 2022; Published: 25 January 2023.

Reviewed by:

Copyright © 2023 Ezeddine, Souissi, Masmoudi, Trabelsi, Puce, Clark, Bragazzi and Mrayah. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Captcha Page

We apologize for the inconvenience...

To ensure we keep this website safe, please can you confirm you are a human by ticking the box below.

If you are unable to complete the above request please contact us using the below link, providing a screenshot of your experience.

https://ioppublishing.org/contacts/

Effects of decision-based learning on student performance in introductory physics: The mediating roles of cognitive load and self-testing

  • Open access
  • Published: 29 August 2024

Cite this article

You have full access to this open access article

problem solving as a teaching and learning strategy

  • Soojeong Jeong   ORCID: orcid.org/0000-0001-8476-2501 1 ,
  • Justin Rague 2 ,
  • Kaylee Litson 3 ,
  • David F. Feldon 4 ,
  • M. Jeannette Lawler 5 &
  • Kenneth Plummer 6  

DBL is a novel pedagogical approach intended to improve students’ conditional knowledge and problem-solving skills by exposing them to a sequence of branching learning decisions. The DBL software provided students with ample opportunities to engage in the expert decision-making processes involved in complex problem-solving and to receive just-in-time instruction and scaffolds at each decision point. The purpose of this study was to examine the effects of decision-based learning (DBL) on undergraduate students’ learning performance in introductory physics courses as well as the mediating roles of cognitive load and self-testing for such effects. We used a quasi-experimental posttest design across two sections of an online introductory physics course including a total N  = 390 participants. Contrary to our initial hypothesis, DBL instruction did not have a direct effect on cognitive load and had no indirect effect on student performance through cognitive load. Results also indicated that while DBL did not directly impact students’ physics performance, self-testing positively mediated the relationship between DBL and student performance. Our findings underscore the importance of students’ use of self-testing which plays a crucial role when engaging with DBL as it can influence effort input towards the domain task and thereby optimize learning performance.

Explore related subjects

  • Artificial Intelligence
  • Digital Education and Educational Technology

Avoid common mistakes on your manuscript.

1 Introduction

Students’ experience and performance in introductory STEM (science, technology, engineering, and mathematics) courses have been identified as one of the most influential factors on STEM major attrition in college (Hunter, 2019 ; Seymour & Hewitt, 1997 ; Watkins & Mazur, 2013 ). Many students perceive these introductory courses as a difficult hurdle, because they deal with a variety of complex concepts and quantitative problem-solving skills (Ornek et al., 2008 ), which highlights the need for adequate instruction. However, current instructional practices remain largely lecture-based, thematic approaches and thus are limited in their ability to help students understand the relevance of complex concepts and the abstract relationships between these concepts in various problem-solving situations (Plummer et al., 2020 ).

Decision-based learning (DBL) is a novel pedagogical approach that organizes instruction around the decision-making processes of experts during complex problem-solving (Plummer et al., 2020 ; Sansom et al., 2019 ). In DBL, students are exposed to a sequence of learning decisions in which the result of each decision depends upon the level of prior knowledge and the previous decision, resulting in an observable decision tree. This decision tree allows students to make important connections between salient features of a problem and the conditions under which to execute beneficial schema patterns to solve problems effectively (Plummer et al., 2020 ; Sansom et al., 2019 ). However, few studies have investigated the effects of DBL in college STEM classrooms (e.g., Sansom et al., 2019 ).

To better understand mechanisms underlying the effects of DBL on student learning and performance, it is also imperative to consider other factors that may be associated with the pathway from DBL to student outcomes. For example, cognitive load—defined as the mental resources devoted to completing a task (Sweller, 1988 )—can be hypothesized as a mediating factor for DBL effects since students are exposed to isolated steps intended to increase the proportion of information processing of salient problem-solving features (Plummer et al., 2020 ). Within the DBL framework, students are expected to experience less extraneous cognitive load, which may lead to more effective and efficient learning as discussed in several previous studies on DBL (e.g., Plummer et al., 2020 ). However, this claim has not previously been empirically tested.

In addition, self-testing is a special form of self-monitoring, defined as “deliberate attention to some aspect of one’s behavior” (Schunk, 1983 , p. 89). Self-testing is a well-documented self-regulatory strategy (Boekaerts, 1996 ; Schunk, 1983 ; Zimmerman, 1990 ), which may also play an important role in mediating the relationships of DBL to cognitive load and learning performance. For instance, if DBL reduces cognitive load, this may leave students more cognitive capacity for using effective learning strategies to regulate their own learning process (e.g., self-monitoring through practice quizzes) and thereby increase the likelihood of successful learning (de Jong & Ferguson-Hessler, 1986 ; Seufert, 2018 ). The relationship between self-regulated learning and cognitive load has been receiving much attention recently, but empirical investigations on this issue are just emerging (Seufert, 2018 ).

Using a path analysis mediation framework, the present study examined the effects of DBL instruction on student performance in introductory physics, while considering cognitive load and self-testing as potential mediators.

2 Literature review and hypothesis development

2.1 decision-based learning (dbl).

Decision-based learning (DBL; Plummer et al., 2020 ) is a novel instructional practice focused on developing conditional knowledge (i.e., knowing under which circumstances to deploy a given strategy during problem solving) to help promote student problem-solving skills. DBL posits that instructors, as experts in their domain, often fail to provide adequate instructional explanations to their students, who are novices in the field, due to a phenomenon called ‘the expert blind spot’ (Feldon, 2007 ; Plummer et al., 2020 ; Swan et al., 2020 ). That is, experts acquire automaticity for their skills through extensive practice, which allows them to perform those skills unconsciously and effortlessly (Nathan & Petrosino, 2003 ). As a result, experts often cannot view problem-solving processes from a novice’s perspective and thus omit critical information or procedures when describing their processes, which can hinder student learning (Hinds et al., 2001 ; Zhu et al., 1996 ; Walsh, 2007 ; Gobet, 2005 ). To overcome the expert blind spot, DBL unpacks experts’ decision-making processes during complex problem-solving, also called an expert decision model , and structures instruction around the decision model (Cardenas et al., 2020 ; Plummer et al., 2020 ).

DBL also posits that experts’ automated skills are largely based on their abundant repertoire of conditionalized knowledge (Cardenas et al., 2020 ; Plummer et al., 2020 ; de Jong & Ferguson-Hessler, 1986 ; Frederiksen, 1984 ). Experts process a vast body of conceptual and procedural knowledge, but, more importantly, they know when and under what conditions their conceptual and procedural knowledge applies to solving problems (Amolloh et al., 2018 ; Lorch et al., 1993 ; Swan et al., 2020 ; Swan, 2021 ). However, conventional instruction, which often relies heavily on lectures and assigned readings, tends to focus largely on conceptual and procedural knowledge with less emphasis on conditional knowledge (Swan et al., 2020 ; Swan, 2021 ). In contrast, the primary focus of DBL is to make conditional knowledge explicit in instruction. DBL guides students through experts’ decisions, allowing them to recognize the conditions that dictate when and why such decisions are made (Plummer et al., 2022 ).

One of the teaching methods known to enhance students’ problem-solving skills is problem-based learning (PBL) (Hmelo-Silver, 2004 ). Both DBL and PBL share foundational similarities but differ significantly in their instructional approaches. DBL provides a structured decision model that systematically guides students through the necessary conditions for making informed decisions. In contrast, PBL allows a relatively higher degree of exploration, letting students discover what they need to know to solve problems with less initial guidance. This greater reliance on exploration in PBL can sometimes impose an unnecessary cognitive load on students, resulting in less effective learning outcomes (Kirschner et al., 2006 ). Conversely, the highly structured scaffold in DBL can help students not only understand what decisions to make but also the specific conditions under which various decisions would be appropriate, offering more direct and stepwise guidance compared to PBL’s more open-ended exploration. However, DBL and PBL are not entirely opposite or competing methods; instead, they can complement each other (Plummer et al., 2022 ). Fischer et al. ( 2021 ) argue that the effects of DBL instruction may be enhanced when followed by PBL activities.

While the implementation of DBL is still in its infancy, studies have provided promising initial evidence of the effects of DBL on student learning (e.g., Pixton, 2023 ; Plummer et al., 2020 , 2022 ; Sansom et al., 2019 ; Tesseyman et al., 2023 ; Vogeler et al., 2022 ). Sansom et al. ( 2019 ), for instance, examined whether DBL instruction helped improve undergraduate students’ performance on heat and enthalpy problems in a general chemistry course and found that students who were taught with DBL performed significantly better than their peers who received business-as-usual instruction. Additionally, their survey findings indicated that the majority of students perceived that using DBL helped them analyze a given problem and choose the correct equation to solve the problem, which suggests that DBL was conducive to developing students’ conditional knowledge.

Similarly, Vogeler et al. ( 2022 ) evaluated the implementation of DBL in a graduate-level introductory statistics course by measuring students’ learning gains through pre/post/follow-up assessments. Results indicated that students’ conditional knowledge, related to statistical analysis (i.e., selecting appropriate statistical methods for given research problems), increased significantly between pre- and post-assessments. Significant improvement was also maintained between post and follow-up. More research is needed to determine the effectiveness of DBL on student learning across a variety of disciplines. In this study, we examined whether DBL instruction helped improve undergraduate students’ problem-solving performance in introductory physics. Based on the findings of previous studies, we hypothesized that:

DBL instruction has a positive effect on student performance in introductory physics.

2.2 Cognitive load

Cognitive load is considered an indexed summation of the experienced mental load within a learning environment and the intentional mental resources applied toward a task (Paas, 1992 ; Sweller et al., 1998 ). According to cognitive load theory (CLT; Sweller et al., 2011 ), successful learning and performance require the cognitive load imposed during instruction to remain within the capacity of the learner’s working memory. CLT also posits that unnecessary or ineffective cognitive load is caused largely by inappropriate instruction, which “requires learners to engage in either a search for a problem solution or a search for referents in an explanation” (Paas et al., 2003 , p. 2). Many studies have demonstrated that instructional methods that provide explicit, step-by-step procedural guidance on how to solve a problem or complete a task (e.g., worked examples), yielded better learning and performance, compared to other methods with incomplete explanations or limited guidance (Atkinson et al., 2000 ; Sweller et al., 1998 ; Tofel-Grehl & Feldon, 2013 ).

In DBL, learners engage in a complete sequence of conditional decisions required to solve a problem by focusing on one decision at a time, which can result in a reduction in potential cognitive overload (Sansom et al., 2019 ). At each decision point, learners are also provided with sufficient information or instruction (i.e., just-enough-just-in-time instruction ) necessary to make the current decision, which can also help them manage their cognitive load (Cardenas et al., 2020 ). Furthermore, DBL is designed to help learners understand how parts are related to the whole of solving a problem by structuring a process for accessing information without having to go through the nuanced processes of critical examination (Plummer et al., 2020 ). As such, we argue that DBL instruction can decrease unnecessary cognitive load during learning. While this notion may be theoretically acceptable, no study has explicitly examined the relationship between DBL and cognitive load. Taken together, we hypothesize that students using DBL will experience less cognitive load than those taught with traditional instruction, which will in turn lead to their greater learning performance in physics.

DBL instruction has a negative effect on cognitive load.

Cognitive load has a negative effect on student performance in introductory physics.

Cognitive load mediates the effect of DBL on physics performance.

2.3 Self-testing

Self-testing is a learning technique to assess one’s own knowledge and understanding of instructional materials, such as testing oneself with questions or using practice problems (Carpenter et al., 2017 ; Hartwig & Dunlosky, 2012 ). Practice testing in general, including being tested by others and self-testing, has long proved to be effective in enhancing student learning (Carpenter et al., 2016 , 2017 ; Dunlosky et al., 2013 ; Hartwig & Dunlosky, 2012 ; McDaniel et al., 2007 ). From a self-regulated learning perspective, self-testing is a special form of self-monitoring, which involves students’ ongoing efforts to deliberately observe their own processes and products of learning (Lan, 2005 ; Zimmerman & Paulsen, 1995 ). Zimmerman and Paulsen ( 1995 ) argue that self-monitoring improves learning by allowing learners to obtain more accurate information about their learning progress and thus make better self-regulatory decisions about their subsequent study.

The relationship between DBL and self-testing has not previously been investigated. More broadly, however, Plummer et al. ( 2022 ) found initial evidence that supports the occurrence of self-regulation (i.e., monitoring one’s cognitive activities) during DBL. Their findings indicated that DBL promoted students’ self-regulation by enabling them to see the bigger vision of the content. The authors also state that a decision model helps learners “identify strategies that are conducive to resolving a variety of knowledge gaps” (p. 726). Similarly, Seufert ( 2018 ) argues that instructional approaches that provide explicit guidance and support (e.g., worked examples or process worksheets) can foster students’ regulation by “providing rules of thumb for the decision on adequate strategies depending on crucial factors” (p. 124). As such, we argue that students learning physics through DBL will become more aware of their understanding of the content and will more actively seek and engage in ways to monitor and regulate their own learning, such as self-testing, compared to their peers not using DBL, thereby achieving better performance in physics. Thus, the following are hypothesized:

DBL instruction has a positive effect on self-testing.

Self-testing has a positive effect on student performance in introductory physics.

Self-testing mediates the effect of DBL on physics performance.

While there is limited evidence directly examining the relationship, we expect that students’ perceived cognitive load would be negatively related to their use of self-testing strategy while learning physics with DBL. A possible theoretical account for this argument is that, when learners are cognitively overloaded and lack internal (e.g., working memory capacity) or external resources (e.g., scaffolds), they might not be able to invest additional effort in self-regulatory processes (Seufert, 2018 , 2020 ). In DBL, learners are provided with explicit instruction and sufficient scaffolds, which can help them avoid unnecessary cognitive load and thus can free up their cognitive resources to monitor and regulate their subsequent study more effectively and thereby increase their performance. Thus, we hypothesize as follows:

Cognitive load has a negative effect on self-testing.

Figure 1 depicts the hypothesized relationships among variables used in the study.

figure 1

Hypothesized path model of DBL, cognitive load, self-testing, and learning performance

3.1 Research design

This study used a quasi-experimental posttest design with nonequivalent groups to examine the effects of DBL on learning performance. Two learning conditions, a DBL condition and a non-DBL condition, were randomly assigned to one of two sections of an online physics course. Although students were allowed to self-select the course in which they were enrolled, making this study quasi-experimental rather than a true experimental design, they were unaware of the specific instructional condition (DBL or non-DBL) to which they would be assigned. This means that while students chose the course section based on their preferences or schedules, they did not know whether they would be experiencing the DBL or the non-DBL condition. This approach helps to control for selection bias to some extent because the students’ choice of section was not influenced by the specific instructional method used. Both condition groups had the same instructor and received identical instruction and assessments, ensuring that any differences in learning outcomes could be attributed to the instructional method rather than to other external factors. The only difference between the groups was the implementation of the DBL approach for two specific lessons (Chap. 2 and 5).

3.2 Participants

Participants included N  = 390 undergraduate students enrolled in an online introductory physics course, called Physical Science 100, at a large private religious university in the western United States. Students were spread across two subsections of the same online course. One section contained n  = 180 students who were taught using DBL instruction while the other section contained n  = 210 students who received standard instruction.

Demographic information was not collected for participating students within the study. However, at the time of the study, university-reported undergraduate demographics suggest approximately 81% of students are white, 7% are Hispanic or Latinx, 4% are two or more races, 3% are Asian or Pacific Islander, and fewer than 1% are either Black or Indigenous Americans. Further, approximately 50% of students at this university are men while 50% are women.

3.3 DBL software

The fundamental principles of DBL do not require a high-tech platform or system to be applied to instruction (Cardenas et al., 2020 ) and earlier implementations, in fact, often utilized simple technologies, such as PowerPoint or handouts (e.g., Plummer et al., 2020 ). Recently, however, software was developed to fully optimize the specific affordances relevant to DBL (Cardenas et al., 2020 ). In this study, we implemented the DBL software in introductory physics courses. The software facilitates the development of expert decision models (see Fig.  2 ), populating a problem bank with conditionally organized problems or scenarios, creating questions to decision paths, adding just-enough-just-in-time instruction for each decision point, and creating interleaved assignments (Cardenas et al., 2020 ).

figure 2

Example of a decision model developed for the course

Figure  3 presents the first two screens of the DBL software used in our study. The first problem guides students through the process of using the software. Students are given a series of scenario problems (e.g., “A book sitting on a table. Gravity is balanced by the upward force from the table, and no other forces act on it. Describe its motion.”) and in each problem students are asked to choose an answer in each decision point (e.g., “How do the forces compare?”) until the problem is solved.

figure 3

Screenshots of the DBL software

Students interested in more detailed instruction could click on the “How Do I Decide” link, which took them to a short lesson with multiple slides, including some video and audio clips. Figure  4 presents part of the short lesson (5 out of 17 slides) for the “how do I decide” on identifying balanced and unbalanced forces.

figure 4

Short lesson example for “How Do I Decide”

3.4 Instructional context

The course was an asynchronous course delivered fully through a learning management system (LMS) over 15 weeks. The course covered introductory physical science topics, such as Newton’s Laws, forces, and motion. It focused on six specific course outcomes related to a conceptual understanding of the fundamental ideas of modern scientific theory, as outlined in the course syllabus:

Apply Physical Principles. Students will be able to recognize and apply the fundamental principles presented in this course to simple physical situations.

Express Scientific Ideas. Students will be able to express their thoughts (in oral, graphical, and written formats) on scientific topics clearly, including appropriate use of basic scientific vocabulary and effective interpretation of quantitative data.

Scientific Observations. Students will be able to explain how scientific observations led to the development of these few principles and the models built on them.

Further Scientific Questions. Students will be able to explain how these principles and models in turn lead to further scientific questions.

Science and Religion. Students will be able to reflect rationally upon the interface between science and religion.

Issues of Public Policy. Students will be able to evaluate scientific data and claims in order to make rational decisions on public policy issues that affect their community.

Course materials included the textbook Physical Science Foundation (edition 5.0) by J. Ward Moody. Students were expected to participate in 34 lessons, 34 homework activities, and 9 article essays throughout the course. Lessons were meant to replace lectures and included a mix of text, video, animations, and practice exams. Homework materials were designed to allow students to practice difficult content. Article essays were designed to provide students with the opportunity to read and write about an assigned article and discuss it with other students. Students were further expected to take four midterm exams and one final exam. Midterm and final exams were open book, timed, and all administered in the LMS. Students’ final grades in the course were based on lessons (15%), homework activities (20%), article essays (10%), midterm exams (30%), and the final exam (25%).

3.5 Implementation process

The DBL software was used in two lessons (Chap. 2 and 5) designed to teach Newton’s laws of motion, were provided to the intervention group during the first week of the class. There were 23 DBL problems in Chap. 2 and 20 problems in Chap. 5. Students were provided with an external link to instructions on using the software, but these instructions were not required. Students in the control group were taught the same three lessons using standard instruction methods. In this traditional approach, they were given the same set of problems as the DBL group, but the learning process differed significantly. Instead of engaging in the DBL software, the control group students learned how to solve the problems through the instructor’s usual explanations and demonstrations. The instructor employed a lecture-based format, providing detailed solutions and theoretical explanations to illustrate the concepts.

At the end of each lesson session, both groups of students were asked to respond to three self-report cognitive load items. After completing the first nine lessons and before taking the first midterm exam, students were required to complete a practice exam consisting of 30 questions. Students were able to take it as many times as they wanted; they were able to redo it until they received full credit, but that meant redoing the entire assignment and answering all the questions again. Students were then given a midterm exam.

3.6 Data collection and measures

Data collection included using self-reported responses of cognitive load items, the number of practice exam attempts, and midterm exam scores. Students’ cognitive load was measured using 3 items adapted from previous cognitive load scales (e.g., Paas, 1992 ). Responses were rated on a 9-point Likert scale. The question items were “How much mental effort did you invest in this chapter?” (1 = very, very low mental effort, 9 = very, very high mental effort), “How easy or difficult did you find this chapter?” (1 = very, very easy, 9 = very, very difficult), and “How complex was the material in this chapter?” (1 = very, very simple, 9 = very, very complicated). The 3 items were averaged to create a composite score for cognitive load, with McDonald’s omega showing high reliability for the present sample (𝜔 = 0.80). Cognitive load was measured during the lesson (Chap. 5) directly preceding the practice and midterm exams.

Students’ self-testing was defined by summing the number of practice exam attempts per student. These attempts were determined by extracting time stamps recorded through the LMS where the courses mainly took place. The time stamp records were coded to count the number of practice exam attempts for each student, ensuring an accurate reflection of self-testing behavior. These data were collected after the midterm exam had concluded to ensure that all practice attempts were accounted for.

Physics learning performance was measured using their midterm scores (total possible points = 33). The midterm exam scores used are derived from established assessments routinely employed by the instructor and have consistently aligned with course objectives and content. The exams have a history of accurately reflecting students’ understanding of the material and have been used over multiple terms to ensure consistency in assessing learning outcomes.

3.7 Data analysis

To examine the effects and mechanisms of how DBL instruction affects students’ learning performance in physics, we evaluated a path model depicted in Fig.  1 that includes both direct and indirect effects. Path models are useful for examining a series of linear relationships among variables; in the present context, path analysis was used to evaluate the relationship between the DBL intervention and learning performance, through self-reported cognitive load and self-testing. Within this model, multiple direct and indirect relationships among variables were examined. The model included 6 direct relationships among variables (shown in the arrows in Fig.  1 ) as well as 4 indirect relationships: (1) intervention → cognitive load → learning, (2) intervention → self-testing → learning, (3) cognitive load → self-testing → learning, and (4) intervention → cognitive load → self-testing → learning. The indirect effects were computed by multiplying the path coefficients present in the indirect relationship. For example, the indirect effect of intervention → cognitive load → learning was computed by multiplying the direct relationship between intervention and cognitive load with the direct relationships between cognitive load and learning. Multiplying coefficients in this manner leads to asymmetrical standard errors of the estimated indirect coefficient, which must be addressed before examining statistical significance.

Bootstrapping methods are commonly used in mediation analysis to correct asymmetrical standard errors and produce unbiased confidence intervals (MacKinnon, 2008 ). In the present study, we evaluated the statistical significance of indirect effects using 5,000 bias-corrected bootstraps, and reporting 95% confidence intervals. If the confidence interval for the effect did not contain zero, the effect was considered statistically significant and was further interpreted. Analyses were evaluated in Mplus version 8.4. Missingness was handled using full-information maximum likelihood estimation.

Table  1 shows the descriptive statistics of the variables of interest across intervention conditions. The mean scores for cognitive load were slightly above the 5.0 scale midpoint in both DBL and control groups. Students in the DBL group had non-significantly higher mean scores for cognitive load than those in the control group. The means for self-testing and learning performance were non-significantly higher in the DBL group than the control group. Across the entire sample, cognitive load was correlated negatively with self-testing ( r  = − .12, p  = .03) and learning performance ( r  = − .22, p  < .001). Self-testing was positively correlated with learning performance ( r  = .23, p  < .001).

The direct effects are shown in Fig.  5 . Results indicated that there was no statistically significant difference in students’ physics learning performance between the DBL and control groups. In other words, DBL instruction did not directly impact student learning ( β  = 0.04, 95% CI [− 0.06, 0.15]) and thus Hypothesis 1 was rejected. Similarly, DBL did not have a direct effect on cognitive load ( β  = 0.04, 95% CI [− 0.06, 0.14]) and self-testing ( β  = 0.10, 95% CI [− 0.00, 0.19], rejecting Hypotheses 2 and 5, respectively. In contrast, several significant direct effects were observed. Students’ perceived cognitive load had a negative effect on their use of self-testing ( β = − 0.12, 95% CI [− 0.23, − 0.02]) and learning performance ( β = − 0.20, 95% CI [− 0.29, − 0.09]), supporting Hypotheses 3 and 8, respectively. Consistent with Hypothesis 6, self-testing has a positive effect on student performance in physics ( β  = 0.20, 95% CI [0.10, 0.30].

figure 5

Standardized path coefficients. Solid lines indicate significant paths while dashed lines indicate non-significance

To examine the mediating roles of cognitive load and self-testing, we tested the significance of indirect effects among variables (see Table  2 ). Cognitive load did not mediate the relationship between DBL instruction and physics learning performance (IE = − 0.01, 95% CI [− 0.035, 0.010]) and thus Hypothesis 4 was not supported. Notably, however, self-testing had a significant mediating effect on the relationship between DBL and students’ learning performance (IE = 0.02, 95% CI [0.002, 0.045]), indicating that the intervention impacted student performance through self-testing, as was previously predicted (Hypothesis 7). The other two indirect effects of DBL examined (DBL → Cognitive load → Self-testing, DBL → Cognitive load → Self-testing → Performance) were not statistically significant.

5 Discussion

Few studies have empirically determined the effects of DBL instruction on student learning. Even fewer have explored the underlying mechanisms driving these effects. This study contributes to this limited body of literature by examining both the outcomes and the underlying processes of DBL in an introductory physics course. Our findings offer mixed evidence regarding the effectiveness of DBL as an instructional method for improving students’ problem-solving skills. We will now discuss the main findings of our study, followed by the practical implications and limitations.

Our findings showed no direct impact of DBL on students’ performance in their study of physics, contrary to previous studies that have reported favorable effects of DBL on student learning (e.g., Plummer et al., 2022 ; Sansom et al., 2019 ; Vogeler et al., 2022 ). This discrepancy highlights a crucial point for discussion; while prior research often posits beneficial impacts of DBL, our empirical evidence suggests these effects may not be as straightforward or universally applicable. For example, studies by Sansom et al. ( 2019 ) and Vogeler et al. ( 2022 ) found significant improvements in student performance with DBL, indicating that step-by-step guidance for problem-solving contributes to these improvements. However, our study did not replicate these results, highlighting potential variability in DBL’s effectiveness across different contexts and implementations.

DBL did not directly impact students’ cognitive load, and cognitive load did not mediate the relationship between DBL instruction and physics learning performance, both contrary to our expectations. Descriptive statistics indicated that the DBL group reported higher cognitive load compared to the control group, but this difference was not statistically significant. The absence of a direct connection between DBL and cognitive load in our study suggests that DBL, as implemented, may not have sufficiently reduced extraneous cognitive load to allow students to utilize their cognitive resources effectively for learning. However, it is also important to note that DBL did not increase cognitive load, which is a positive aspect. These findings stand in contrast to existing theoretical assumptions and empirical evidence, which suggest that highly structured instructional methods like DBL should reduce cognitive load and thus improve learning outcomes (Sansom et al., 2019 ; Sweller et al., 1998 ).

One potential explanation for these findings could be associated with the novelty of the DBL model and its software. DBL itself is a novel instructional model that requires students to understand a new method of problem-solving using conditional knowledge. Implemented within a computer-based environment, the DBL software may add to the challenge. The dual task of learning this new pedagogical approach and mastering the accompanying software could present significant challenges for students. Researchers have pointed out that until students gain experience in navigating a new learning environment, the environment itself may incur an additional cognitive load, which may impede learning (Atkinson et al., 2000 ; Choi et al., 2014 ; Carpenter et al., 2016 ). In fact, in Sansom et al. ( 2019 )’s study, which found positive effects of DBL, participants did not use DBL software as it had not been developed. Instead, they applied the DBL model in a traditional classroom setting. Consequently, the dual adaptation process might have diminished the overall effectiveness of the intervention in our study.

Another possible explanation is that presence or absence of certain DBL critical features can impact performance (Vogeler et al., 2022 ). In their study, Vogeler et al. ( 2022 ) found that when students had an equal amount of practice problems within and outside of the decision model that their mastery of the conditional knowledge-related learning outcome increased. In addition, apart from Sansom et al. ( 2019 ), those studies which found an increase in student performance used DBL activities to interleave old and new material on a regular schedule. The DBL intervention for this study was more like Sansom et al. ( 2019 ) study where the DBL activities were sprinkled across a few lessons during an entire semester.

Next, we discuss key findings of our study related to self-testing. The hypothesis that DBL instruction positively predicts self-testing was rejected; no significant difference was found in students’ frequency of use of practice exams between the DBL and control groups. This unexpected result suggests that DBL may not have influenced students’ engagement with self-testing practices as hypothesized. One possible explanation for this finding is related to the diverse motivations and behaviors of students regarding practice exams. It is likely that students who engaged with practice exams fewer times fell into one of two groups: those who were content with their knowledge in the course and felt no need for additional practice, and those who were struggling with the course material and chose to avoid practice due to a lack of confidence or motivation. This dichotomy in student behavior highlights the complexity of predicting educational outcomes based solely on instructional methods.

However, despite the lack of a direct relationship between DBL and the frequency of self-testing, the data revealed that the frequency of students’ self-testing was a significant determinant of their midterm scores. Additionally, DBL had an indirect effect on student performance through self-testing. These findings underscore the critical role of self-testing in academic performance. Self-testing is widely recognized as an effective learning strategy that enhances memory retention and understanding of the material (Hartwig & Dunlosky, 2012 ). When students test themselves, they engage in retrieval practice, which strengthens their ability to recall and apply knowledge, thereby improving their academic performance (Dunlosky et al., 2013 ). These results are also generally in line with previous studies showing significant effects of self-monitoring (e.g., Lan, 1996 ; Chang, 2007 ). Chang ( 2007 ) also demonstrated that self-monitoring techniques, including self-testing, positively affected students’ academic performance by helping them identify areas of weakness and focus their study efforts more effectively. According to theories of self-regulated learning, students regulate subsequent learning behaviors based on their assessment of their current status of learning, possibly leading to better learning performance (Boekaerts, 1996 ; Schunk, 1983 ; Zimmerman, 1990 ). Although DBL did not directly increase the frequency of self-testing, it may have promoted an environment where students felt more empowered to engage in self-regulatory behaviors, which then positively impacts performance.

Lastly, we highlight another key finding of our study: the impact of cognitive load on self-testing. Our findings revealed that cognitive load negatively impacted self-testing, aligning with our initial expectations. High levels of cognitive load may diminish the cognitive resources necessary for engaging in self-regulatory activities (Seufert, 2018 , 2020 ). More importantly, our results showed a structural relationship among cognitive load, self-testing, and learning performance. Specifically, we found that cognitive load impacts learning performance indirectly through self-testing. This mediation effect underscores the pivotal role of self-testing in translating cognitive load into improved academic performance. Given the increasing interest in understanding how cognitive load affects self-regulation (Seufert, 2018 , 2020 ), our findings are particularly encouraging. They suggest that managing cognitive load is crucial for fostering self-regulatory behaviors that ultimately enhance learning outcomes.

Our findings offer important implications for the practice of DBL, emphasizing the crucial role of instructors. The following practical implications primarily focus on providing guidance for instructors who want to implement DBL. First, instructors should encourage self-testing by providing ample opportunities within the course. Instructors can offer various methods for self-testing, such as quizzes, practice exams, and interactive activities, to enhance the effectiveness of DBL. While self-testing is often voluntary, incorporating incentives or rewards can motivate students to engage more frequently in this practice. By fostering a culture of self-assessment and providing diverse opportunities for self-testing, instructors can help students optimize their learning and fully realize the potential benefits of DBL. Second, to manage students’ cognitive load, instructors should provide students with explicit instruction on how the DBL software works as well as substantial practice opportunities in order to become accustomed to the software. Likewise, instructors should consider integrating DBL gradually, starting with simpler tasks and progressively increasing complexity as students become more comfortable with the system. These efforts would help prevent the potential cognitive overload that students might experience while adapting to the new learning environment. Third, continuous support is essential for the successful implementation of DBL. It is crucial to monitor students’ progress and cognitive load regularly to identify and address any issues promptly. By creating a structured and supportive learning environment, instructors can maximize the benefits of DBL and improve overall student performance and engagement. Lastly, as important as emphasizing the role of instructors is the issue of how to support these instructors effectively. Providing comprehensive training on the DBL software and its pedagogical applications is essential for teachers to successfully integrate it into their teaching practices. This training should include both technical aspects of the software and strategies for managing and supporting students’ cognitive load. Ongoing professional development opportunities can help teachers stay updated with the latest DBL advancements and best practices, ensuring sustained success in DBL implementation.

While this study sheds light on our understanding of the mechanisms underlying the effects of DBL, our findings should be interpreted with caution due to several limitations—related to sample homogeneity, instructional contexts, motivational variables, and measurement tools. First, the homogeneity of our sample poses a limitation. Our study was conducted at a single university in the western United States, with a predominantly white student population, which may limit the generalizability of our findings to other educational contexts and populations. The absence of comprehensive demographic data, such as students’ socioeconomic backgrounds and prior educational experiences, further limits our ability to assess how these factors might influence the effectiveness of DBL. Future studies should include more diverse samples and collect detailed demographic information to enhance the generalizability of the results. Second, the focus of our study on introductory physics courses taught by a single instructor may limit the applicability of our findings to other educational settings. By concentrating on a specific course and instructor, we may have overlooked variations in instructional approaches and contexts that could impact the effectiveness of DBL. Expanding research to include different types of courses, instructors, and institutional environments will provide a more comprehensive understanding of DBL’s potential benefits and limitations. Additionally, exploring how DBL integrates with other pedagogical approaches, such as flipped classrooms and collaborative learning, could offer valuable insights into its broader applications. Third, our study did not account for potentially influential motivational variables. Research has shown that motivational beliefs, such as students’ self-efficacy, goal orientation significantly impact their use of self-testing strategies (e.g., Chang, 2007 ) and perceived cognitive load (e.g., Feldon et al., 2018 ). By excluding these variables, we may have missed critical aspects of the psychological processes underlying DBL. Future research should incorporate these motivational and psychological factors to better explain the mechanisms driving the effects of DBL and to identify factors that may enhance or hinder its effectiveness. Lastly, the measurement tools used in this study may not have fully captured the complexity and dynamic nature of cognitive load and self-testing. Future studies should employ advanced tools such as real-time analytics and interactive assessments. Additionally, integrating qualitative methods, such as in-depth interviews and observational studies, could provide deeper insights into students’ subjective experiences and strategies during learning.

Although DBL has great potential for the improvement of student learning, this assertion remains largely theoretical (Cardenas et al., 2020 ). Our findings provide empirical evidence regarding the educational benefits of DBL on self-testing practices, and self-testing’s impact on midterm scores. However, much remains unclear about the impact of DBL on student learning behaviors and ultimately, student learning performance. Overall, the results suggest that DBL can be an effective instructional tool for students to acquire complex, conditional knowledge and develop self-regulatory skills that may transcend beyond learning specific knowledge and instead help students engage differently with the process of learning (Plummer et al., 2020 ). Findings also provide valuable insight into the interactions that can explain DBL effects on student learning, highlighting the importance of considering relevant cognitive processes, such as mental workload and use of self-regulation strategies in research and practice in DBL.

Data availability

All data used in this study will be made available upon request.

Amolloh, O. P., Lilian, G. K., & Wanjiru, K. G. (2018). Experiential learning, conditional knowledge and professional development at University of Nairobi, Kenya – focusing on preparedness for teaching practice. International Education Studies , 11 (7), 125–135. https://doi.org/10.5539/ies.v11n7p125

Article   Google Scholar  

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from examples: Instructional principles from the worked examples research. Review of Educational Research , 70 (2), 181–214. https://doi.org/10.3102/00346543070002181

Boekaerts, M. (1996). Self-regulated learning at the junction of cognition and motivation. European Psychologist , 1 (2), 100–112. https://doi.org/10.1027/1016-9040.1.2.100

Cardenas, C., West, R., Swan, R., & Plummer, K. (2020). Modeling expertise through decision-based learning: Theory, practice, and technology applications. Revista De Educacion a Distancia(RED) , 20 (64), 1–24. https://doi.org/10.6018/red.408651

Carpenter, S. K., Lund, T. J., Coffman, C. R., Armstrong, P. I., Lamm, M. H., & Reason, R. D. (2016). A classroom study on the relationship between student achievement and retrieval enhanced learning. Educational Psychology Review , 28 (2), 353–375. https://doi.org/10.1007/s10648-015-9311-9

Carpenter, S. K., Rahman, S., Lund, T. J., Armstrong, P. I., Lamm, M. H., Reason, R. D., & Coffman, C. R. (2017). Students’ use of optional online reviews and its relationship to summative assessment outcomes in introductory biology. CBE—Life Sciences Education , 16 (2), ar23. https://doi.org/10.1187/cbe.16-06-0205

Chang, M. M. (2007). Enhancing web-based language learning through self‐monitoring. Journal of Computer Assisted Learning , 23 (3), 187–196. https://doi.org/10.1111/j.1365-2729.2006.00203.x

Choi, H. H., Van Merriënboer, J. J., & Paas, F. (2014). Effects of the physical environment on cognitive load and learning: Towards a new model of cognitive load. Educational Psychology Review , 26 (2), 225–244. https://doi.org/10.1007/s10648-014-9262-6

de Jong, T., & Ferguson-Hessler, M. G. (1986). Cognitive structures of good and poor novice problem solvers in physics. Journal of Educational Psychology , 78 (4), 279–288. https://doi.org/10.1037/0022-0663.78.4.279

Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students’ learning with effective learning techniques: Promising directions from cognitive and educational psychology. Psychological Science in the Public Interest , 14 (1), 4–58. https://doi.org/10.1177/1529100612453266

Feldon, D. F. (2007). The implications of research on expertise for curriculum and pedagogy. Educational Psychology Review , 19 , 91–110. https://doi.org/10.1007/s10648-006-9041-0

Feldon, D. F., Franco, J., Chao, J., Peugh, J., & Maahs-Fladung, C. (2018). Self-efficacy change associated with a cognitive load-based intervention in an undergraduate biology course. Learning and Instruction , 56 , 64–72. https://doi.org/10.1016/j.learninstruc.2018.04.007

Fischer, L., Plummer, K. J., Vogeler, H. A., & Moulton, S. (2021). I am not a real statistician; I just play one on TV. In N. Wentworth, K. J. Plummer, & R. H. Swan (Eds.), Decision-based learning: An innovative pedagogy that unpacks expert knowledge for the novice learner (pp. 19–30). Emerald Publishing Limited. https://doi.org/10.1108/978-1-80043-202-420211003

Frederiksen, N. (1984). Implications of cognitive theory for instruction in problem solving. Review of Educational Research , 54 (3), 363–407. https://doi.org/10.1002/j.2330-8516.1983.tb00019.x

Gobet, F. (2005). Chunking models of expertise: Implications for education. Applied Cognitive Psychology , 19 (2), 183–204. https://doi.org/10.1002/acp.1110

Hartwig, M. K., & Dunlosky, J. (2012). Study strategies of college students: Are self-testing and scheduling related to achievement? Psychonomic Bulletin & Review , 19 (1), 126–134. https://doi.org/10.3758/s13423-011-0181-y

Hinds, P. J., Patterson, M., & Pfeffer, J. (2001). Bothered by abstraction: The effect of expertise on knowledge transfer and subsequent novice performance. Journal of Applied Psychology , 86 (6), 1232–1243. https://doi.org/10.1037/0021-9010.86.6.1232

Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review , 16 , 235–266. https://doi.org/10.1023/B:EDPR.0000034022.16470.f3

Hunter, A. B. (2019). Why undergraduates leave STEM majors: Changes over the last two decades. In E. Seymour, & A.-B. Hunter (Eds.), Talking about Leaving Revisited (pp. 87–114). Springer. https://doi.org/10.1007/978-3-030-25304-2_3

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist , 41 (2), 75–86. https://doi.org/10.1207/s15326985ep4102_1

Lan, W. Y. (1996). The effects of self-monitoring on students’ course performance, use of learning strategies, attitude, self-judgment ability, and knowledge representation. Journal of Experimental Education , 64 (2), 101–115. https://doi.org/10.1080/00220973.1996.9943798

Lan, W. Y. (2005). Self-monitoring and its relationship with educational level and task importance. Educational Psychology , 25 (1), 109–127. https://doi.org/10.1080/0144341042000294921

Lorch, R. F., Lorch, E. P., & Klusewitz, M. A. (1993). College students’ conditional knowledge about reading. Journal of Educational Psychology , 85 (2), 239–252. https://doi.org/10.1037/0022-0663.85.2.239

MacKinnon, D. P. (2008). Introduction to statistical mediation analysis . Erlbaum.

McDaniel, M. A., Anderson, J. L., Derbish, M. H., & Morrisette, N. (2007). Testing the testing effect in the classroom. European Journal of Cognitive Psychology , 19 (4–5), 494–513.

Nathan, M. J., & Petrosino, A. (2003). Expert blind spot among preservice teachers. American Educational Research Journal , 40 (4), 905–928. https://doi.org/10.1080/09541440701326154

Ornek, F., Robinson, W. R., & Haugan, M. P. (2008). What makes physics difficult? International Journal of Environmental and Science Education , 3 (1), 30–34.

Google Scholar  

Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology , 84 , 429–434. https://doi.org/10.1037/0022-0663.84.4.429

Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist , 38 (1), 1–4. https://doi.org/10.1207/S15326985EP3801_1

Pixton, D. (2023). Teaching expert information literacy behaviors through decision-based learning. College & Research Libraries , 84 (6), 934. https://doi.org/10.5860/crl.84.6.934

Plummer, K., Taeger, S., & Burton, M. (2020). Decision-based learning in religious education. Teaching Theology and Religion , 23 (2), 110–125. https://doi.org/10.1111/teth.12538

Plummer, K. J., Kebritchi, M., Leary, H. M., & Halverson, D. M. (2022). Enhancing critical thinking skills through decision-based learning. Innovative Higher Education , 1–24. https://doi.org/10.1007/s10755-022-09595-9

Sansom, R. L., Suh, E., & Plummer, K. J. (2019). Decision-based learning: If I just knew which equation to use, I know I could solve this problem! Journal of Chemical Education , 96 (3), 445–454. https://doi.org/10.1021/acs.jchemed.8b00754

Schunk, D. H. (1983). Progress self-monitoring: Effects on children’s self-efficacy and achievement. Journal of Experimental Education , 51 , 89–93. https://doi.org/10.1080/00220973.1982.11011845

Seufert, T. (2018). The interplay between self-regulation in learning and cognitive load. Educational Research Review , 24 , 116–129. https://doi.org/10.1016/j.edurev.2018.03.004

Seufert, T. (2020). Building bridges between self-regulation and cognitive load—an invitation for a broad and differentiated attempt. Educational Psychology Review , 32 , 1151–1162. https://doi.org/10.1007/s10648-020-09574-6

Seymour, E., & Hewitt, N. (1997). Talking about leaving: Why undergraduates leave the sciences . Westview.

Swan, R. H. (2021). Why decision-based learning is different. In N. Wentworth, K. J. Plummer, & R. H. Swan (Eds.), Decision-based learning: An innovative pedagogy that unpacks expert knowledge for the novice learner (pp. 1–9). Emerald Publishing Limited. https://doi.org/10.1108/978-1-80043-202-420211001

Swan, R. H., Plummer, K. J., & West, R. E. (2020). Toward functional expertise through formal education: Identifying an opportunity for higher education. Educational Technology Research and Development , 68 (5), 2551–2568. https://doi.org/10.1007/s11423-020-09778-1

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science , 12 (2), 257–285. https://doi.org/10.1016/0364-0213(88)90023-7

Sweller, J., Van Merrienboer, J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review , 10 (3), 251–296. https://doi.org/10.1023/A:1022193728205

Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory . New York, NY: Springer. https://doi.org/10.1007/978-1-4419-8126-4

Tesseyman, S., Poulsen, T., Rainsdon-Meek, S., Leary, H., Sorensen, U., & Plummer, K. (2023). Decision-based learning for teaching arterial blood gas analysis. International Journal of Nursing Education Scholarship , 20 (1), 20230028. https://doi.org/10.1515/ijnes-2023-0028

Tofel-Grehl, C., & Feldon, D. F. (2013). Cognitive task analysis-based training: A meta-analysis of studies. Journal of Cognitive Engineering and Decision Making , 7 (3), 293–304. https://doi.org/10.1177/1555343412474821

Vogeler, H. A., Plummer, K. J., Fischer, L., & Plummer, A. L. (2022). Decision-based learning: A journey from conception to implementation to iteration. Educational Research: Theory and Practice , 33 (2), 103–115.

Walsh, A. (2007). An exploration of Biggs’ constructive alignment in the context of work-based learning. Assessment & Evaluation in Higher Education , 32 (1), 79–87. https://doi.org/10.1080/02602930600848309

Article   MathSciNet   Google Scholar  

Watkins, J., & Mazur, E. (2013). Retaining students in science, technology, engineering, and mathematics (STEM) majors. Journal of College Science Teaching , 42 (5), 36–41. https://www.jstor.org/stable/43631580

Zhu, X., Lee, Y., Simon, H. A., & Zhu, D. (1996). Cue recognition and cue elaboration in learning from examples. Proceedings of the National Academy of Sciences , 93 (3), 1346–1351. https://doi.org/10.1073/pnas.93.3.1346

Zimmerman, B. J. (1990). Self-regulated learning and academic achievement: An overview. Educational Psychologist , 25 (1), 3–17. https://doi.org/10.1207/s15326985ep2501_2

Zimmerman, B. J., & Paulsen, A. S. (1995). Self-monitoring during collegiate studying: An invaluable tool for academic self-regulation. In P. Pintrich (Ed.), New directions in college teaching and learning: Understanding self-regulated learning (pp. 13–27). Jossey-Bass. https://doi.org/10.1002/tl.37219956305

Download references

Open Access funding enabled and organized by Seoul National University.

Author information

Authors and affiliations.

SNU Career Development Center, SNU Learning Sciences Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea

Soojeong Jeong

Center for Teaching and Learning, Ogden-Weber Technical College, 200 N Washington Blvd, Ogden, UT, 84403, USA

Justin Rague

Department of Psychology, University of Houston, 3695 Cullen Boulevard Room 126, Houston, TX, 77204-5022, USA

Kaylee Litson

Department of Instructional Technology and Learning Sciences, Utah State University, 2830 Old Main Hill, Logan, UT, 84322, USA

David F. Feldon

Department of Physics and Astronomy, Brigham Young University, N283 ESC, Provo, UT, 84602, USA

M. Jeannette Lawler

Center for Teaching and Learning, Brigham Young University, 3800 HBLL, Provo, UT, 84602, USA

Kenneth Plummer

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Soojeong Jeong .

Ethics declarations

Competing interests.

The authors have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Jeong, S., Rague, J., Litson, K. et al. Effects of decision-based learning on student performance in introductory physics: The mediating roles of cognitive load and self-testing. Educ Inf Technol (2024). https://doi.org/10.1007/s10639-024-12962-y

Download citation

Received : 31 January 2024

Accepted : 07 August 2024

Published : 29 August 2024

DOI : https://doi.org/10.1007/s10639-024-12962-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Decision-based learning
  • Expert decision models
  • Conditional knowledge
  • Cognitive load
  • Self-testing
  • Introductory physics
  • Find a journal
  • Publish with us
  • Track your research

These languages are provided via eTranslation, the European Commission's machine translation service.

  • slovenščina
  • Azerbaijani

.

CREATIVE THINKING-Problem Solving-Managing Classrooms and Opening Minds for 21st Century-BERLIN

Creative thinking involves generating new and innovative ideas, perspectives, and solutions. It's a cognitive process that breaks away from traditional, linear thinking and embraces originality.

Description

  • Welcome and Icebreaker
  • Introduction to the course objectives and structure.
  • Icebreaker activities to create a positive and interactive learning environment.
  • Understanding Creativity
  • Definition of creativity and its importance in education.
  • Exploration of common myths about creativity.
  • Barriers to Creativity
  • Identification and discussion of common barriers to creative thinking.
  • Strategies to overcome these barriers.
  • Creativity in Education
  • Day 2: Creative Thinking Models
  • Introduction to Creative Thinking Models
  • Practical Application
  • Hands-on activities applying creative thinking models to real-world scenarios.
  • Group discussions and sharing of insights.
  • Case Studies in Creative Teaching
  • Analysis of case studies showcasing creative teaching practices.
  • Group discussions on adapting these practices to various subjects.
  • Day 3: Techniques for Fostering Creativity
  • Brainstorming and Mind Mapping
  • Techniques for effective brainstorming.
  • Introduction to mind mapping as a visual thinking tool.
  • Creative Exercises for the Classroom
  • Interactive activities that can be easily integrated into lesson plans.
  • Exploration of techniques to stimulate creativity in students.
  • Day 4: Cultivating a Creative Classroom
  • Building a Creative Classroom Culture
  • Strategies for creating a classroom environment that encourages creative thinking.
  • Importance of positive feedback and encouragement.
  • Role of Technology in Creative Education
  • Exploration of educational tools and technologies that promote creativity.
  • Hands-on experience with selected tools.
  • Day 5: Assessment and Continuous Improvement
  • Assessing Creativity in Students
  • Strategies for assessing and evaluating creative thinking in the classroom.
  • Course Wrap-up and Certificates
  • Distribution of course completion certificates.
  • Closing remarks and encouragement for continued creativity in teaching.

Learning objectives

  •  Be willing to consider ideas that might initially seem unusual or unconventional. Avoid immediate judgment and explore different viewpoints.
  •  Cultivate a curious mindset. Ask questions, seek new information, and challenge assumptions. Curiosity fuels exploration and can lead to unexpected connections.
  • Encourage the generation of a wide variety of ideas. Brainstorming is a classic example of divergent thinking, where the goal is to produce a large quantity of ideas without initially evaluating them.
  • Make connections between seemingly unrelated concepts. This can lead to novel and creative solutions. Metaphors, analogies, and similes are tools that can help in this process.
  •  Create visual representations of ideas and their relationships. Mind maps can help you organize thoughts and identify connections that might not be immediately apparent in a linear format.
  • Questioning assumptions can lead to fresh perspectives. Ask yourself why things are done a certain way and consider alternatives.
  •  Comfort with uncertainty and ambiguity is crucial for creative thinking. Sometimes the most innovative ideas emerge from situations that lack clear solutions.
  •  Approach problems with a sense of play. Experimentation and play can lead to unexpected breakthroughs.
  • Engage with others to exchange ideas and perspectives. Collaboration often brings together diverse experiences and knowledge, fostering creativity.
  •  Stepping away from a problem can give your mind the space it needs to subconsciously process information and come up with creative solutions.
  •  Exposure to a variety of ideas, disciplines, and perspectives can inspire creativity. Read books, articles, and materials outside your usual areas of interest.

Methodology & assessment

Certification details.

  • Completion Certificate : Upon successfully completing a teacher training course, you will typically receive a completion certificate or diploma from the training provider or institution. This certificate acknowledges your participation and successful completion of the training.
  • Course Duration : The duration of teacher training courses can vary widely. Some may be short-term workshops or seminars, while others may be more comprehensive and span several weeks or months. The certificate may indicate the total number of hours or credits completed.
  • Content and Curriculum : The certificate should outline the key topics, content, and skills covered during the training. This information helps future employers or educational institutions understand the scope of your training.
  • Credits or Continuing Education Units (CEUs) : In some cases, teacher training courses may offer academic credits or Continuing Education Units (CEUs). These credits can be valuable for professional development and may be recognized by educational authorities or institutions.
  • Language of Instruction : If the teacher training course is conducted in a language other than your native language, the certificate may indicate your language proficiency level or the language in which the training was delivered.
  • Evaluation and Assessment : Teacher training courses often involve assessments or evaluations of your performance. The certificate may include information about your performance in the training, such as grades or evaluations.
  • Recognition and Accreditation : Ensure that the teacher training course and the institution providing it are recognized and accredited by relevant educational authorities or professional bodies. This can affect the credibility and transferability of your certificate.
  • Pedagogical Practices : If the training includes practical teaching experience or classroom observations, the certificate may highlight your proficiency in specific pedagogical practices or teaching methodologies.

Pricing, packages and other information

  • Price: 400 Euro
  • Package contents: Course

Additional information

  • Language: English
  • Target audience ISCED: Primary education (ISCED 1) Lower secondary education (ISCED 2) Upper secondary education (ISCED 3)
  • Target audience type: Teacher Head Teacher / Principal Government staff / policy maker
  • Learning time: 25 hours or more

Upcoming sessions

problem solving as a teaching and learning strategy

Vocational subjects

Key competences, more courses by this organiser.

.

EQUITY IN EDUCATION: EMBRACING DIVERSITY IN SPECIAL NEEDS-BARCELONA

Next upcoming session  02.09.2024 - 06.09.2024

problem solving as a teaching and learning strategy

DIGITAL HORIZONS - EQUIPPING EDUCATORS FOR TECHNOLOGY-INTEGRATED LEARNING-BUDAPEST

Digital horizons - equipping educators for technology-integrated learning-rome.

IMAGES

  1. Developing Problem-Solving Skills for Kids

    problem solving as a teaching and learning strategy

  2. Phases of teaching and learning strategies of windpump problem-solving

    problem solving as a teaching and learning strategy

  3. Problem Solving as a Teaching Strategy by Ifrana Dean on Prezi

    problem solving as a teaching and learning strategy

  4. Problem Solving Strategies for Education

    problem solving as a teaching and learning strategy

  5. Problem Solving Strategies Display Poster (teacher made)

    problem solving as a teaching and learning strategy

  6. Teaching The IDEAL Problem-Solving Method To Diverse Learners

    problem solving as a teaching and learning strategy

VIDEO

  1. Teaching Activity #12 Problems and solutions

  2. Problem solving idea

  3. How to Motivate Students to Use Effective Learning Strategies

  4. Unlocking the Power of Problem Solving: Teaching Resilience to Youngsters

  5. USING PROBLEM SOLVING TEACHING STRATEGY| KILLEN CHAPTER 10

  6. Problem solving method of teaching Steps in problem Solving Method समस्या समाधान विधि के चरण #ctet

COMMENTS

  1. Problem-Solving Method In Teaching

    The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to ...

  2. Teaching Problem Solving

    Make students articulate their problem solving process . In a one-on-one tutoring session, ask the student to work his/her problem out loud. This slows down the thinking process, making it more accurate and allowing you to access understanding. When working with larger groups you can ask students to provide a written "two-column solution.".

  3. Teaching problem solving

    Strategies for teaching problem solving apply across disciplines and instructional contexts. First, introduce the problem and explain how people in your discipline generally make sense of the given information. Then, explain how to apply these approaches to solve the problem. Introducing the problem Explaining how people in your discipline understand and interpret these types of problems can ...

  4. Teaching Problem-Solving Skills

    Some common problem-solving strategies are: compute; simplify; use an equation; make a model, diagram, table, or chart; or work backwards. Choose the best strategy. Help students to choose the best strategy by reminding them again what they are required to find or calculate. Be patient.

  5. Teaching problem solving: Let students get 'stuck' and 'unstuck'

    Teaching problem solving: Let students get 'stuck' and 'unstuck'. This is the second in a six-part blog series on teaching 21st century skills, including problem solving , metacognition ...

  6. Problem based learning: a teacher's guide

    Problem-based learning (PBL) is a style of teaching that encourages students to become the drivers of their learning process. Problem-based learning involves complex learning issues from real-world problems and makes them the classroom's topic of discussion; encouraging students to understand concepts through problem-solving skills rather than ...

  7. The effectiveness of collaborative problem solving in promoting

    Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field ...

  8. Problem-Based Learning (PBL)

    Problem-Based Learning (PBL) is a teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to direct presentation of facts and concepts. In addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and ...

  9. Problem-Based Learning

    Problem-based learning (PBL) is a student-centered approach in which students learn about a subject by working in groups to solve an open-ended problem. ... Problem solving across disciplines. Considerations for Using Problem-Based Learning. Rather than teaching relevant material and subsequently having students apply the knowledge to solve ...

  10. (PDF) Principles for Teaching Problem Solving

    structured problem solving. 7) Use inductive teaching strategies to encourage synthesis of mental models and for. moderately and ill-structured problem solving. 8) Within a problem exercise, help ...

  11. Problem-Based Learning: What and How Do Students Learn?

    Problem-based approaches to learning have a long history of advocating experience-based education. Psychological research and theory suggests that by having students learn through the experience of solving problems, they can learn both content and thinking strategies. Problem-based learning (PBL) is an instructional method in which students learn through facilitated problem solving. In PBL ...

  12. Ch. 5 Problem Based Learning

    Problem Based Learning is a teaching methodology. ... simulations of "what if" scenarios are used to train managers in various strategies and problem-solving approaches to conflict resolution. In both military and business settings, the simulation is a tool that provides an opportunity to not only address realistic problems but to learn ...

  13. The process of implementing problem-based learning in a teacher

    Developing students' competence in critical and independent thinking through this traditional teaching approach is difficult (Chang-Jiang & Shi, Citation 2018); as such, teacher education has encountered a dilemma, requiring educators in teacher education to modify their teaching strategies. Problem-based learning (PBL) was originally ...

  14. PDF Problem Based Learning: A Student-Centered Approach

    2). Learning happens in collaborative setting in social context. 3). Unfamiliar information can be dealt with strategies applied, handling problems with well -designed solutions. 4). Learner centered problems should be designed. 5). Self-directed learning can take place. 6). Problem solving can incites for learning. 7).

  15. Problem-Based Learning: An Overview of its Process and Impact on

    Problem-based learning (PBL) has been widely adopted in diverse fields and educational contexts to promote critical thinking and problem-solving in authentic learning situations. Its close affiliation with workplace collaboration and interdisciplinary learning contributed to its spread beyond the traditional realm of clinical education 1 to ...

  16. Learning is a problem-solving activity.

    A consistent message from the literature is that some learners continue to demonstrate learning strategy deficits, as Winne noted in 2005 and McCardle et al. noted again in 2017. Students need to be explicitly taught how to be powerful problem-solvers for learning. Strategy instruction for solving learning problems is not something that should be left to chance for students to discover by ...

  17. 44 Instructional Strategies Examples for Every Kind of Classroom

    Problem-Solving. In this indirect learning method, students work their way through a problem to find a solution. Along the way, they must develop the knowledge to understand the problem and use creative thinking to solve it. STEM challenges are terrific examples of problem-solving instructional strategies.

  18. Problem Solving in Mathematics Education

    In addition to studying taught problem solving strategies he has also managed to identify and classify a variety of strategies, mostly ineffectual, that students invoke ... On understanding, learning and teaching problem solving (Vol. 2). New York, NY: Wiley. Google Scholar Resnick, L., & Glaser, R. (1976). Problem solving and intelligence. ...

  19. Teaching and learning problem solving in science. Part I: A general

    Teaching and learning problem solving in science. Part I: A general strategy. C. T. C. W. Mettes , A. Pilot , ... Fostering Active Chemistry Learning in Thailand: Toward a Learner-Centered Student Experiences. 2014, 305-344. ... An Evidence‐Based Strategy for Problem Solving. Journal of Engineering Education 2000, 89 (4) ...

  20. Critical Thinking and Problem-Solving

    Cooperative Learning Strategies: Cooper (1995) argues that putting students in group learning situations is the best way to foster critical thinking. "In properly structured cooperative learning environments, students perform more of the active, critical thinking with continuous support and feedback from other students and the teacher" (p. 8).

  21. Frontiers

    Improving problem-solving skills is a primary educational goal, as is the ability to use reasoning. To acquire this skill, students must solve problems to learn mathematics and problem-solving ; this encourages the students to actively participate and contribute to the activities suggested by the teacher. Without sufficient motivation, learning ...

  22. Problem solving strategy in the teaching and learning processes of

    Problem solving strategy in the teaching and learning processes of quantitative reasoning. D Barrera 1, ... The study presents an analysis of Polya's problem-solving strategy used in the training processes of quantitative reasoning competence in students of the Universidad Simón Bolívar, San José de Cúcuta, Colombia. ...

  23. Effects of decision-based learning on student performance in ...

    2.1 Decision-based learning (DBL). Decision-based learning (DBL; Plummer et al., 2020) is a novel instructional practice focused on developing conditional knowledge (i.e., knowing under which circumstances to deploy a given strategy during problem solving) to help promote student problem-solving skills.DBL posits that instructors, as experts in their domain, often fail to provide adequate ...

  24. CREATIVE THINKING-Problem Solving-Managing Classrooms and Opening Minds

    Collaborative Learning: Collaborative learning is often encouraged in teacher training courses. Participants may work in groups to develop teaching materials, lesson plans, and teaching strategies. Collaborative projects can promote the exchange of ideas and best practices.