Have a language expert improve your writing
Run a free plagiarism check in 10 minutes, generate accurate citations for free.
- Knowledge Base
Methodology
- How to Write a Strong Hypothesis | Steps & Examples
How to Write a Strong Hypothesis | Steps & Examples
Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.
A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .
Example: Hypothesis
Daily apple consumption leads to fewer doctor’s visits.
Table of contents
What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.
A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.
A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).
Variables in hypotheses
Hypotheses propose a relationship between two or more types of variables .
- An independent variable is something the researcher changes or controls.
- A dependent variable is something the researcher observes and measures.
If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias will affect your results.
In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .
Prevent plagiarism. Run a free check.
Step 1. ask a question.
Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.
Step 2. Do some preliminary research
Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.
At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.
Step 3. Formulate your hypothesis
Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.
4. Refine your hypothesis
You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:
- The relevant variables
- The specific group being studied
- The predicted outcome of the experiment or analysis
5. Phrase your hypothesis in three ways
To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.
In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.
If you are comparing two groups, the hypothesis can state what difference you expect to find between them.
6. Write a null hypothesis
If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .
- H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
- H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.
Research question | Hypothesis | Null hypothesis |
---|---|---|
What are the health benefits of eating an apple a day? | Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. | Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits. |
Which airlines have the most delays? | Low-cost airlines are more likely to have delays than premium airlines. | Low-cost and premium airlines are equally likely to have delays. |
Can flexible work arrangements improve job satisfaction? | Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. | There is no relationship between working hour flexibility and job satisfaction. |
How effective is high school sex education at reducing teen pregnancies? | Teenagers who received sex education lessons throughout high school will have lower rates of unplanned pregnancy teenagers who did not receive any sex education. | High school sex education has no effect on teen pregnancy rates. |
What effect does daily use of social media have on the attention span of under-16s? | There is a negative between time spent on social media and attention span in under-16s. | There is no relationship between social media use and attention span in under-16s. |
If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.
- Sampling methods
- Simple random sampling
- Stratified sampling
- Cluster sampling
- Likert scales
- Reproducibility
Statistics
- Null hypothesis
- Statistical power
- Probability distribution
- Effect size
- Poisson distribution
Research bias
- Optimism bias
- Cognitive bias
- Implicit bias
- Hawthorne effect
- Anchoring bias
- Explicit bias
A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).
Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.
Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.
Cite this Scribbr article
If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.
McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved October 4, 2024, from https://www.scribbr.com/methodology/hypothesis/
Is this article helpful?
Shona McCombes
Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, get unlimited documents corrected.
✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts
Have a language expert improve your writing
Run a free plagiarism check in 10 minutes, automatically generate references for free.
- Knowledge Base
- Methodology
- How to Write a Strong Hypothesis | Guide & Examples
How to Write a Strong Hypothesis | Guide & Examples
Published on 6 May 2022 by Shona McCombes .
A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.
Table of contents
What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.
A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.
A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).
Variables in hypotheses
Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.
In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .
Prevent plagiarism, run a free check.
Step 1: ask a question.
Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.
Step 2: Do some preliminary research
Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.
At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.
Step 3: Formulate your hypothesis
Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.
Step 4: Refine your hypothesis
You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:
- The relevant variables
- The specific group being studied
- The predicted outcome of the experiment or analysis
Step 5: Phrase your hypothesis in three ways
To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.
In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.
If you are comparing two groups, the hypothesis can state what difference you expect to find between them.
Step 6. Write a null hypothesis
If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .
Research question | Hypothesis | Null hypothesis |
---|---|---|
What are the health benefits of eating an apple a day? | Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. | Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits. |
Which airlines have the most delays? | Low-cost airlines are more likely to have delays than premium airlines. | Low-cost and premium airlines are equally likely to have delays. |
Can flexible work arrangements improve job satisfaction? | Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. | There is no relationship between working hour flexibility and job satisfaction. |
How effective is secondary school sex education at reducing teen pregnancies? | Teenagers who received sex education lessons throughout secondary school will have lower rates of unplanned pregnancy than teenagers who did not receive any sex education. | Secondary school sex education has no effect on teen pregnancy rates. |
What effect does daily use of social media have on the attention span of under-16s? | There is a negative correlation between time spent on social media and attention span in under-16s. | There is no relationship between social media use and attention span in under-16s. |
Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.
A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).
A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).
A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.
Cite this Scribbr article
If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.
McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 30 September 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/
Is this article helpful?
Shona McCombes
Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.
User Preferences
Content preview.
Arcu felis bibendum ut tristique et egestas quis:
- Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
- Duis aute irure dolor in reprehenderit in voluptate
- Excepteur sint occaecat cupidatat non proident
Keyboard Shortcuts
6a.2 - steps for hypothesis tests, the logic of hypothesis testing section .
A hypothesis, in statistics, is a statement about a population parameter, where this statement typically is represented by some specific numerical value. In testing a hypothesis, we use a method where we gather data in an effort to gather evidence about the hypothesis.
How do we decide whether to reject the null hypothesis?
- If the sample data are consistent with the null hypothesis, then we do not reject it.
- If the sample data are inconsistent with the null hypothesis, but consistent with the alternative, then we reject the null hypothesis and conclude that the alternative hypothesis is true.
Six Steps for Hypothesis Tests Section
In hypothesis testing, there are certain steps one must follow. Below these are summarized into six such steps to conducting a test of a hypothesis.
- Set up the hypotheses and check conditions : Each hypothesis test includes two hypotheses about the population. One is the null hypothesis, notated as \(H_0 \), which is a statement of a particular parameter value. This hypothesis is assumed to be true until there is evidence to suggest otherwise. The second hypothesis is called the alternative, or research hypothesis, notated as \(H_a \). The alternative hypothesis is a statement of a range of alternative values in which the parameter may fall. One must also check that any conditions (assumptions) needed to run the test have been satisfied e.g. normality of data, independence, and number of success and failure outcomes.
- Decide on the significance level, \(\alpha \): This value is used as a probability cutoff for making decisions about the null hypothesis. This alpha value represents the probability we are willing to place on our test for making an incorrect decision in regards to rejecting the null hypothesis. The most common \(\alpha \) value is 0.05 or 5%. Other popular choices are 0.01 (1%) and 0.1 (10%).
- Calculate the test statistic: Gather sample data and calculate a test statistic where the sample statistic is compared to the parameter value. The test statistic is calculated under the assumption the null hypothesis is true and incorporates a measure of standard error and assumptions (conditions) related to the sampling distribution.
- Calculate probability value (p-value), or find the rejection region: A p-value is found by using the test statistic to calculate the probability of the sample data producing such a test statistic or one more extreme. The rejection region is found by using alpha to find a critical value; the rejection region is the area that is more extreme than the critical value. We discuss the p-value and rejection region in more detail in the next section.
- Make a decision about the null hypothesis: In this step, we decide to either reject the null hypothesis or decide to fail to reject the null hypothesis. Notice we do not make a decision where we will accept the null hypothesis.
- State an overall conclusion : Once we have found the p-value or rejection region, and made a statistical decision about the null hypothesis (i.e. we will reject the null or fail to reject the null), we then want to summarize our results into an overall conclusion for our test.
We will follow these six steps for the remainder of this Lesson. In the future Lessons, the steps will be followed but may not be explained explicitly.
Step 1 is a very important step to set up correctly. If your hypotheses are incorrect, your conclusion will be incorrect. In this next section, we practice with Step 1 for the one sample situations.
- Skip to secondary menu
- Skip to main content
- Skip to primary sidebar
Statistics By Jim
Making statistics intuitive
Statistical Hypothesis Testing Overview
By Jim Frost 59 Comments
In this blog post, I explain why you need to use statistical hypothesis testing and help you navigate the essential terminology. Hypothesis testing is a crucial procedure to perform when you want to make inferences about a population using a random sample. These inferences include estimating population properties such as the mean, differences between means, proportions, and the relationships between variables.
This post provides an overview of statistical hypothesis testing. If you need to perform hypothesis tests, consider getting my book, Hypothesis Testing: An Intuitive Guide .
Why You Should Perform Statistical Hypothesis Testing
Hypothesis testing is a form of inferential statistics that allows us to draw conclusions about an entire population based on a representative sample. You gain tremendous benefits by working with a sample. In most cases, it is simply impossible to observe the entire population to understand its properties. The only alternative is to collect a random sample and then use statistics to analyze it.
While samples are much more practical and less expensive to work with, there are trade-offs. When you estimate the properties of a population from a sample, the sample statistics are unlikely to equal the actual population value exactly. For instance, your sample mean is unlikely to equal the population mean. The difference between the sample statistic and the population value is the sample error.
Differences that researchers observe in samples might be due to sampling error rather than representing a true effect at the population level. If sampling error causes the observed difference, the next time someone performs the same experiment the results might be different. Hypothesis testing incorporates estimates of the sampling error to help you make the correct decision. Learn more about Sampling Error .
For example, if you are studying the proportion of defects produced by two manufacturing methods, any difference you observe between the two sample proportions might be sample error rather than a true difference. If the difference does not exist at the population level, you won’t obtain the benefits that you expect based on the sample statistics. That can be a costly mistake!
Let’s cover some basic hypothesis testing terms that you need to know.
Background information : Difference between Descriptive and Inferential Statistics and Populations, Parameters, and Samples in Inferential Statistics
Hypothesis Testing
Hypothesis testing is a statistical analysis that uses sample data to assess two mutually exclusive theories about the properties of a population. Statisticians call these theories the null hypothesis and the alternative hypothesis. A hypothesis test assesses your sample statistic and factors in an estimate of the sample error to determine which hypothesis the data support.
When you can reject the null hypothesis, the results are statistically significant, and your data support the theory that an effect exists at the population level.
The effect is the difference between the population value and the null hypothesis value. The effect is also known as population effect or the difference. For example, the mean difference between the health outcome for a treatment group and a control group is the effect.
Typically, you do not know the size of the actual effect. However, you can use a hypothesis test to help you determine whether an effect exists and to estimate its size. Hypothesis tests convert your sample effect into a test statistic, which it evaluates for statistical significance. Learn more about Test Statistics .
An effect can be statistically significant, but that doesn’t necessarily indicate that it is important in a real-world, practical sense. For more information, read my post about Statistical vs. Practical Significance .
Null Hypothesis
The null hypothesis is one of two mutually exclusive theories about the properties of the population in hypothesis testing. Typically, the null hypothesis states that there is no effect (i.e., the effect size equals zero). The null is often signified by H 0 .
In all hypothesis testing, the researchers are testing an effect of some sort. The effect can be the effectiveness of a new vaccination, the durability of a new product, the proportion of defect in a manufacturing process, and so on. There is some benefit or difference that the researchers hope to identify.
However, it’s possible that there is no effect or no difference between the experimental groups. In statistics, we call this lack of an effect the null hypothesis. Therefore, if you can reject the null, you can favor the alternative hypothesis, which states that the effect exists (doesn’t equal zero) at the population level.
You can think of the null as the default theory that requires sufficiently strong evidence against in order to reject it.
For example, in a 2-sample t-test, the null often states that the difference between the two means equals zero.
When you can reject the null hypothesis, your results are statistically significant. Learn more about Statistical Significance: Definition & Meaning .
Related post : Understanding the Null Hypothesis in More Detail
Alternative Hypothesis
The alternative hypothesis is the other theory about the properties of the population in hypothesis testing. Typically, the alternative hypothesis states that a population parameter does not equal the null hypothesis value. In other words, there is a non-zero effect. If your sample contains sufficient evidence, you can reject the null and favor the alternative hypothesis. The alternative is often identified with H 1 or H A .
For example, in a 2-sample t-test, the alternative often states that the difference between the two means does not equal zero.
You can specify either a one- or two-tailed alternative hypothesis:
If you perform a two-tailed hypothesis test, the alternative states that the population parameter does not equal the null value. For example, when the alternative hypothesis is H A : μ ≠ 0, the test can detect differences both greater than and less than the null value.
A one-tailed alternative has more power to detect an effect but it can test for a difference in only one direction. For example, H A : μ > 0 can only test for differences that are greater than zero.
Related posts : Understanding T-tests and One-Tailed and Two-Tailed Hypothesis Tests Explained
P-values are the probability that you would obtain the effect observed in your sample, or larger, if the null hypothesis is correct. In simpler terms, p-values tell you how strongly your sample data contradict the null. Lower p-values represent stronger evidence against the null. You use P-values in conjunction with the significance level to determine whether your data favor the null or alternative hypothesis.
Related post : Interpreting P-values Correctly
Significance Level (Alpha)
For instance, a significance level of 0.05 signifies a 5% risk of deciding that an effect exists when it does not exist.
Use p-values and significance levels together to help you determine which hypothesis the data support. If the p-value is less than your significance level, you can reject the null and conclude that the effect is statistically significant. In other words, the evidence in your sample is strong enough to be able to reject the null hypothesis at the population level.
Related posts : Graphical Approach to Significance Levels and P-values and Conceptual Approach to Understanding Significance Levels
Types of Errors in Hypothesis Testing
Statistical hypothesis tests are not 100% accurate because they use a random sample to draw conclusions about entire populations. There are two types of errors related to drawing an incorrect conclusion.
- False positives: You reject a null that is true. Statisticians call this a Type I error . The Type I error rate equals your significance level or alpha (α).
- False negatives: You fail to reject a null that is false. Statisticians call this a Type II error. Generally, you do not know the Type II error rate. However, it is a larger risk when you have a small sample size , noisy data, or a small effect size. The type II error rate is also known as beta (β).
Statistical power is the probability that a hypothesis test correctly infers that a sample effect exists in the population. In other words, the test correctly rejects a false null hypothesis. Consequently, power is inversely related to a Type II error. Power = 1 – β. Learn more about Power in Statistics .
Related posts : Types of Errors in Hypothesis Testing and Estimating a Good Sample Size for Your Study Using Power Analysis
Which Type of Hypothesis Test is Right for You?
There are many different types of procedures you can use. The correct choice depends on your research goals and the data you collect. Do you need to understand the mean or the differences between means? Or, perhaps you need to assess proportions. You can even use hypothesis testing to determine whether the relationships between variables are statistically significant.
To choose the proper statistical procedure, you’ll need to assess your study objectives and collect the correct type of data . This background research is necessary before you begin a study.
Related Post : Hypothesis Tests for Continuous, Binary, and Count Data
Statistical tests are crucial when you want to use sample data to make conclusions about a population because these tests account for sample error. Using significance levels and p-values to determine when to reject the null hypothesis improves the probability that you will draw the correct conclusion.
To see an alternative approach to these traditional hypothesis testing methods, learn about bootstrapping in statistics !
If you want to see examples of hypothesis testing in action, I recommend the following posts that I have written:
- How Effective Are Flu Shots? This example shows how you can use statistics to test proportions.
- Fatality Rates in Star Trek . This example shows how to use hypothesis testing with categorical data.
- Busting Myths About the Battle of the Sexes . A fun example based on a Mythbusters episode that assess continuous data using several different tests.
- Are Yawns Contagious? Another fun example inspired by a Mythbusters episode.
Share this:
Reader Interactions
January 14, 2024 at 8:43 am
Hello professor Jim, how are you doing! Pls. What are the properties of a population and their examples? Thanks for your time and understanding.
January 14, 2024 at 12:57 pm
Please read my post about Populations vs. Samples for more information and examples.
Also, please note there is a search bar in the upper-right margin of my website. Use that to search for topics.
July 5, 2023 at 7:05 am
Hello, I have a question as I read your post. You say in p-values section
“P-values are the probability that you would obtain the effect observed in your sample, or larger, if the null hypothesis is correct. In simpler terms, p-values tell you how strongly your sample data contradict the null. Lower p-values represent stronger evidence against the null.”
But according to your definition of effect, the null states that an effect does not exist, correct? So what I assume you want to say is that “P-values are the probability that you would obtain the effect observed in your sample, or larger, if the null hypothesis is **incorrect**.”
July 6, 2023 at 5:18 am
Hi Shrinivas,
The correct definition of p-value is that it is a probability that exists in the context of a true null hypothesis. So, the quotation is correct in stating “if the null hypothesis is correct.”
Essentially, the p-value tells you the likelihood of your observed results (or more extreme) if the null hypothesis is true. It gives you an idea of whether your results are surprising or unusual if there is no effect.
Hence, with sufficiently low p-values, you reject the null hypothesis because it’s telling you that your sample results were unlikely to have occurred if there was no effect in the population.
I hope that helps make it more clear. If not, let me know I’ll attempt to clarify!
May 8, 2023 at 12:47 am
Thanks a lot Ny best regards
May 7, 2023 at 11:15 pm
Hi Jim Can you tell me something about size effect? Thanks
May 8, 2023 at 12:29 am
Here’s a post that I’ve written about Effect Sizes that will hopefully tell you what you need to know. Please read that. Then, if you have any more specific questions about effect sizes, please post them there. Thanks!
January 7, 2023 at 4:19 pm
Hi Jim, I have only read two pages so far but I am really amazed because in few paragraphs you made me clearly understand the concepts of months of courses I received in biostatistics! Thanks so much for this work you have done it helps a lot!
January 10, 2023 at 3:25 pm
Thanks so much!
June 17, 2021 at 1:45 pm
Can you help in the following question: Rocinante36 is priced at ₹7 lakh and has been designed to deliver a mileage of 22 km/litre and a top speed of 140 km/hr. Formulate the null and alternative hypotheses for mileage and top speed to check whether the new models are performing as per the desired design specifications.
April 19, 2021 at 1:51 pm
Its indeed great to read your work statistics.
I have a doubt regarding the one sample t-test. So as per your book on hypothesis testing with reference to page no 45, you have mentioned the difference between “the sample mean and the hypothesised mean is statistically significant”. So as per my understanding it should be quoted like “the difference between the population mean and the hypothesised mean is statistically significant”. The catch here is the hypothesised mean represents the sample mean.
Please help me understand this.
Regards Rajat
April 19, 2021 at 3:46 pm
Thanks for buying my book. I’m so glad it’s been helpful!
The test is performed on the sample but the results apply to the population. Hence, if the difference between the sample mean (observed in your study) and the hypothesized mean is statistically significant, that suggests that population does not equal the hypothesized mean.
For one sample tests, the hypothesized mean is not the sample mean. It is a mean that you want to use for the test value. It usually represents a value that is important to your research. In other words, it’s a value that you pick for some theoretical/practical reasons. You pick it because you want to determine whether the population mean is different from that particular value.
I hope that helps!
November 5, 2020 at 6:24 am
Jim, you are such a magnificent statistician/economist/econometrician/data scientist etc whatever profession. Your work inspires and simplifies the lives of so many researchers around the world. I truly admire you and your work. I will buy a copy of each book you have on statistics or econometrics. Keep doing the good work. Remain ever blessed
November 6, 2020 at 9:47 pm
Hi Renatus,
Thanks so much for you very kind comments. You made my day!! I’m so glad that my website has been helpful. And, thanks so much for supporting my books! 🙂
November 2, 2020 at 9:32 pm
Hi Jim, I hope you are aware of 2019 American Statistical Association’s official statement on Statistical Significance: https://www.tandfonline.com/doi/full/10.1080/00031305.2019.1583913 In case you do not bother reading the full article, may I quote you the core message here: “We conclude, based on our review of the articles in this special issue and the broader literature, that it is time to stop using the term “statistically significant” entirely. Nor should variants such as “significantly different,” “p < 0.05,” and “nonsignificant” survive, whether expressed in words, by asterisks in a table, or in some other way."
With best wishes,
November 3, 2020 at 2:09 am
I’m definitely aware of the debate surrounding how to use p-values most effectively. However, I need to correct you on one point. The link you provide is NOT a statement by the American Statistical Association. It is an editorial by several authors.
There is considerable debate over this issue. There are problems with p-values. However, as the authors state themselves, much of the problem is over people’s mindsets about how to use p-values and their incorrect interpretations about what statistical significance does and does not mean.
If you were to read my website more thoroughly, you’d be aware that I share many of their concerns and I address them in multiple posts. One of the authors’ key points is the need to be thoughtful and conduct thoughtful research and analysis. I emphasize this aspect in multiple posts on this topic. I’ll ask you to read the following three because they all address some of the authors’ concerns and suggestions. But you might run across others to read as well.
Five Tips for Using P-values to Avoid Being Misled How to Interpret P-values Correctly P-values and the Reproducibility of Experimental Results
September 24, 2020 at 11:52 pm
HI Jim, i just want you to know that you made explanation for Statistics so simple! I should say lesser and fewer words that reduce the complexity. All the best! 🙂
September 25, 2020 at 1:03 am
Thanks, Rene! Your kind words mean a lot to me! I’m so glad it has been helpful!
September 23, 2020 at 2:21 am
Honestly, I never understood stats during my entire M.Ed course and was another nightmare for me. But how easily you have explained each concept, I have understood stats way beyond my imagination. Thank you so much for helping ignorant research scholars like us. Looking forward to get hardcopy of your book. Kindly tell is it available through flipkart?
September 24, 2020 at 11:14 pm
I’m so happy to hear that my website has been helpful!
I checked on flipkart and it appears like my books are not available there. I’m never exactly sure where they’re available due to the vagaries of different distribution channels. They are available on Amazon in India.
Introduction to Statistics: An Intuitive Guide (Amazon IN) Hypothesis Testing: An Intuitive Guide (Amazon IN)
July 26, 2020 at 11:57 am
Dear Jim I am a teacher from India . I don’t have any background in statistics, and still I should tell that in a single read I can follow your explanations . I take my entire biostatistics class for botany graduates with your explanations. Thanks a lot. May I know how I can avail your books in India
July 28, 2020 at 12:31 am
Right now my books are only available as ebooks from my website. However, soon I’ll have some exciting news about other ways to obtain it. Stay tuned! I’ll announce it on my email list. If you’re not already on it, you can sign up using the form that is in the right margin of my website.
June 22, 2020 at 2:02 pm
Also can you please let me if this book covers topics like EDA and principal component analysis?
June 22, 2020 at 2:07 pm
This book doesn’t cover principal components analysis. Although, I wouldn’t really classify that as a hypothesis test. In the future, I might write a multivariate analysis book that would cover this and others. But, that’s well down the road.
My Introduction to Statistics covers EDA. That’s the largely graphical look at your data that you often do prior to hypothesis testing. The Introduction book perfectly leads right into the Hypothesis Testing book.
June 22, 2020 at 1:45 pm
Thanks for the detailed explanation. It does clear my doubts. I saw that your book related to hypothesis testing has the topics that I am studying currently. I am looking forward to purchasing it.
Regards, Take Care
June 19, 2020 at 1:03 pm
For this particular article I did not understand a couple of statements and it would great if you could help: 1)”If sample error causes the observed difference, the next time someone performs the same experiment the results might be different.” 2)”If the difference does not exist at the population level, you won’t obtain the benefits that you expect based on the sample statistics.”
I discovered your articles by chance and now I keep coming back to read & understand statistical concepts. These articles are very informative & easy to digest. Thanks for the simplifying things.
June 20, 2020 at 9:53 pm
I’m so happy to hear that you’ve found my website to be helpful!
To answer your questions, keep in mind that a central tenant of inferential statistics is that the random sample that a study drew was only one of an infinite number of possible it could’ve drawn. Each random sample produces different results. Most results will cluster around the population value assuming they used good methodology. However, random sampling error always exists and makes it so that population estimates from a sample almost never exactly equal the correct population value.
So, imagine that we’re studying a medication and comparing the treatment and control groups. Suppose that the medicine is truly not effect and that the population difference between the treatment and control group is zero (i.e., no difference.) Despite the true difference being zero, most sample estimates will show some degree of either a positive or negative effect thanks to random sampling error. So, just because a study has an observed difference does not mean that a difference exists at the population level. So, on to your questions:
1. If the observed difference is just random error, then it makes sense that if you collected another random sample, the difference could change. It could change from negative to positive, positive to negative, more extreme, less extreme, etc. However, if the difference exists at the population level, most random samples drawn from the population will reflect that difference. If the medicine has an effect, most random samples will reflect that fact and not bounce around on both sides of zero as much.
2. This is closely related to the previous answer. If there is no difference at the population level, but say you approve the medicine because of the observed effects in a sample. Even though your random sample showed an effect (which was really random error), that effect doesn’t exist. So, when you start using it on a larger scale, people won’t benefit from the medicine. That’s why it’s important to separate out what is easily explained by random error versus what is not easily explained by it.
I think reading my post about how hypothesis tests work will help clarify this process. Also, in about 24 hours (as I write this), I’ll be releasing my new ebook about Hypothesis Testing!
May 29, 2020 at 5:23 am
Hi Jim, I really enjoy your blog. Can you please link me on your blog where you discuss about Subgroup analysis and how it is done? I need to use non parametric and parametric statistical methods for my work and also do subgroup analysis in order to identify potential groups of patients that may benefit more from using a treatment than other groups.
May 29, 2020 at 2:12 pm
Hi, I don’t have a specific article about subgroup analysis. However, subgroup analysis is just the dividing up of a larger sample into subgroups and then analyzing those subgroups separately. You can use the various analyses I write about on the subgroups.
Alternatively, you can include the subgroups in regression analysis as an indicator variable and include that variable as a main effect and an interaction effect to see how the relationships vary by subgroup without needing to subdivide your data. I write about that approach in my article about comparing regression lines . This approach is my preferred approach when possible.
April 19, 2020 at 7:58 am
sir is confidence interval is a part of estimation?
April 17, 2020 at 3:36 pm
Sir can u plz briefly explain alternatives of hypothesis testing? I m unable to find the answer
April 18, 2020 at 1:22 am
Assuming you want to draw conclusions about populations by using samples (i.e., inferential statistics ), you can use confidence intervals and bootstrap methods as alternatives to the traditional hypothesis testing methods.
March 9, 2020 at 10:01 pm
Hi JIm, could you please help with activities that can best teach concepts of hypothesis testing through simulation, Also, do you have any question set that would enhance students intuition why learning hypothesis testing as a topic in introductory statistics. Thanks.
March 5, 2020 at 3:48 pm
Hi Jim, I’m studying multiple hypothesis testing & was wondering if you had any material that would be relevant. I’m more trying to understand how testing multiple samples simultaneously affects your results & more on the Bonferroni Correction
March 5, 2020 at 4:05 pm
I write about multiple comparisons (aka post hoc tests) in the ANOVA context . I don’t talk about Bonferroni Corrections specifically but I cover related types of corrections. I’m not sure if that exactly addresses what you want to know but is probably the closest I have already written. I hope it helps!
January 14, 2020 at 9:03 pm
Thank you! Have a great day/evening.
January 13, 2020 at 7:10 pm
Any help would be greatly appreciated. What is the difference between The Hypothesis Test and The Statistical Test of Hypothesis?
January 14, 2020 at 11:02 am
They sound like the same thing to me. Unless this is specialized terminology for a particular field or the author was intending something specific, I’d guess they’re one and the same.
April 1, 2019 at 10:00 am
so these are the only two forms of Hypothesis used in statistical testing?
April 1, 2019 at 10:02 am
Are you referring to the null and alternative hypothesis? If so, yes, that’s those are the standard hypotheses in a statistical hypothesis test.
April 1, 2019 at 9:57 am
year very insightful post, thanks for the write up
October 27, 2018 at 11:09 pm
hi there, am upcoming statistician, out of all blogs that i have read, i have found this one more useful as long as my problem is concerned. thanks so much
October 27, 2018 at 11:14 pm
Hi Stano, you’re very welcome! Thanks for your kind words. They mean a lot! I’m happy to hear that my posts were able to help you. I’m sure you will be a fantastic statistician. Best of luck with your studies!
October 26, 2018 at 11:39 am
Dear Jim, thank you very much for your explanations! I have a question. Can I use t-test to compare two samples in case each of them have right bias?
October 26, 2018 at 12:00 pm
Hi Tetyana,
You’re very welcome!
The term “right bias” is not a standard term. Do you by chance mean right skewed distributions? In other words, if you plot the distribution for each group on a histogram they have longer right tails? These are not the symmetrical bell-shape curves of the normal distribution.
If that’s the case, yes you can as long as you exceed a specific sample size within each group. I include a table that contains these sample size requirements in my post about nonparametric vs parametric analyses .
Bias in statistics refers to cases where an estimate of a value is systematically higher or lower than the true value. If this is the case, you might be able to use t-tests, but you’d need to be sure to understand the nature of the bias so you would understand what the results are really indicating.
I hope this helps!
April 2, 2018 at 7:28 am
Simple and upto the point 👍 Thank you so much.
April 2, 2018 at 11:11 am
Hi Kalpana, thanks! And I’m glad it was helpful!
March 26, 2018 at 8:41 am
Am I correct if I say: Alpha – Probability of wrongly rejection of null hypothesis P-value – Probability of wrongly acceptance of null hypothesis
March 28, 2018 at 3:14 pm
You’re correct about alpha. Alpha is the probability of rejecting the null hypothesis when the null is true.
Unfortunately, your definition of the p-value is a bit off. The p-value has a fairly convoluted definition. It is the probability of obtaining the effect observed in a sample, or more extreme, if the null hypothesis is true. The p-value does NOT indicate the probability that either the null or alternative is true or false. Although, those are very common misinterpretations. To learn more, read my post about how to interpret p-values correctly .
March 2, 2018 at 6:10 pm
I recently started reading your blog and it is very helpful to understand each concept of statistical tests in easy way with some good examples. Also, I recommend to other people go through all these blogs which you posted. Specially for those people who have not statistical background and they are facing to many problems while studying statistical analysis.
Thank you for your such good blogs.
March 3, 2018 at 10:12 pm
Hi Amit, I’m so glad that my blog posts have been helpful for you! It means a lot to me that you took the time to write such a nice comment! Also, thanks for recommending by blog to others! I try really hard to write posts about statistics that are easy to understand.
January 17, 2018 at 7:03 am
I recently started reading your blog and I find it very interesting. I am learning statistics by my own, and I generally do many google search to understand the concepts. So this blog is quite helpful for me, as it have most of the content which I am looking for.
January 17, 2018 at 3:56 pm
Hi Shashank, thank you! And, I’m very glad to hear that my blog is helpful!
January 2, 2018 at 2:28 pm
thank u very much sir.
January 2, 2018 at 2:36 pm
You’re very welcome, Hiral!
November 21, 2017 at 12:43 pm
Thank u so much sir….your posts always helps me to be a #statistician
November 21, 2017 at 2:40 pm
Hi Sachin, you’re very welcome! I’m happy that you find my posts to be helpful!
November 19, 2017 at 8:22 pm
great post as usual, but it would be nice to see an example.
November 19, 2017 at 8:27 pm
Thank you! At the end of this post, I have links to four other posts that show examples of hypothesis tests in action. You’ll find what you’re looking for in those posts!
Comments and Questions Cancel reply
- How it works
Hypothesis Testing – A Complete Guide with Examples
Published by Alvin Nicolas at August 14th, 2021 , Revised On October 26, 2023
In statistics, hypothesis testing is a critical tool. It allows us to make informed decisions about populations based on sample data. Whether you are a researcher trying to prove a scientific point, a marketer analysing A/B test results, or a manufacturer ensuring quality control, hypothesis testing plays a pivotal role. This guide aims to introduce you to the concept and walk you through real-world examples.
What is a Hypothesis and a Hypothesis Testing?
A hypothesis is considered a belief or assumption that has to be accepted, rejected, proved or disproved. In contrast, a research hypothesis is a research question for a researcher that has to be proven correct or incorrect through investigation.
What is Hypothesis Testing?
Hypothesis testing is a scientific method used for making a decision and drawing conclusions by using a statistical approach. It is used to suggest new ideas by testing theories to know whether or not the sample data supports research. A research hypothesis is a predictive statement that has to be tested using scientific methods that join an independent variable to a dependent variable.
Example: The academic performance of student A is better than student B
Characteristics of the Hypothesis to be Tested
A hypothesis should be:
- Clear and precise
- Capable of being tested
- Able to relate to a variable
- Stated in simple terms
- Consistent with known facts
- Limited in scope and specific
- Tested in a limited timeframe
- Explain the facts in detail
What is a Null Hypothesis and Alternative Hypothesis?
A null hypothesis is a hypothesis when there is no significant relationship between the dependent and the participants’ independent variables .
In simple words, it’s a hypothesis that has been put forth but hasn’t been proved as yet. A researcher aims to disprove the theory. The abbreviation “Ho” is used to denote a null hypothesis.
If you want to compare two methods and assume that both methods are equally good, this assumption is considered the null hypothesis.
Example: In an automobile trial, you feel that the new vehicle’s mileage is similar to the previous model of the car, on average. You can write it as: Ho: there is no difference between the mileage of both vehicles. If your findings don’t support your hypothesis and you get opposite results, this outcome will be considered an alternative hypothesis.
If you assume that one method is better than another method, then it’s considered an alternative hypothesis. The alternative hypothesis is the theory that a researcher seeks to prove and is typically denoted by H1 or HA.
If you support a null hypothesis, it means you’re not supporting the alternative hypothesis. Similarly, if you reject a null hypothesis, it means you are recommending the alternative hypothesis.
Example: In an automobile trial, you feel that the new vehicle’s mileage is better than the previous model of the vehicle. You can write it as; Ha: the two vehicles have different mileage. On average/ the fuel consumption of the new vehicle model is better than the previous model.
If a null hypothesis is rejected during the hypothesis test, even if it’s true, then it is considered as a type-I error. On the other hand, if you don’t dismiss a hypothesis, even if it’s false because you could not identify its falseness, it’s considered a type-II error.
Hire an Expert Researcher
Orders completed by our expert writers are
- Formally drafted in academic style
- 100% Plagiarism free & 100% Confidential
- Never resold
- Include unlimited free revisions
- Completed to match exact client requirements
How to Conduct Hypothesis Testing?
Here is a step-by-step guide on how to conduct hypothesis testing.
Step 1: State the Null and Alternative Hypothesis
Once you develop a research hypothesis, it’s important to state it is as a Null hypothesis (Ho) and an Alternative hypothesis (Ha) to test it statistically.
A null hypothesis is a preferred choice as it provides the opportunity to test the theory. In contrast, you can accept the alternative hypothesis when the null hypothesis has been rejected.
Example: You want to identify a relationship between obesity of men and women and the modern living style. You develop a hypothesis that women, on average, gain weight quickly compared to men. Then you write it as: Ho: Women, on average, don’t gain weight quickly compared to men. Ha: Women, on average, gain weight quickly compared to men.
Step 2: Data Collection
Hypothesis testing follows the statistical method, and statistics are all about data. It’s challenging to gather complete information about a specific population you want to study. You need to gather the data obtained through a large number of samples from a specific population.
Example: Suppose you want to test the difference in the rate of obesity between men and women. You should include an equal number of men and women in your sample. Then investigate various aspects such as their lifestyle, eating patterns and profession, and any other variables that may influence average weight. You should also determine your study’s scope, whether it applies to a specific group of population or worldwide population. You can use available information from various places, countries, and regions.
Step 3: Select Appropriate Statistical Test
There are many types of statistical tests , but we discuss the most two common types below, such as One-sided and two-sided tests.
Note: Your choice of the type of test depends on the purpose of your study
One-sided Test
In the one-sided test, the values of rejecting a null hypothesis are located in one tail of the probability distribution. The set of values is less or higher than the critical value of the test. It is also called a one-tailed test of significance.
Example: If you want to test that all mangoes in a basket are ripe. You can write it as: Ho: All mangoes in the basket, on average, are ripe. If you find all ripe mangoes in the basket, the null hypothesis you developed will be true.
Two-sided Test
In the two-sided test, the values of rejecting a null hypothesis are located on both tails of the probability distribution. The set of values is less or higher than the first critical value of the test and higher than the second critical value test. It is also called a two-tailed test of significance.
Example: Nothing can be explicitly said whether all mangoes are ripe in the basket. If you reject the null hypothesis (Ho: All mangoes in the basket, on average, are ripe), then it means all mangoes in the basket are not likely to be ripe. A few mangoes could be raw as well.
Get statistical analysis help at an affordable price
- An expert statistician will complete your work
- Rigorous quality checks
- Confidentiality and reliability
- Any statistical software of your choice
- Free Plagiarism Report
Step 4: Select the Level of Significance
When you reject a null hypothesis, even if it’s true during a statistical hypothesis, it is considered the significance level . It is the probability of a type one error. The significance should be as minimum as possible to avoid the type-I error, which is considered severe and should be avoided.
If the significance level is minimum, then it prevents the researchers from false claims.
The significance level is denoted by P, and it has given the value of 0.05 (P=0.05)
If the P-Value is less than 0.05, then the difference will be significant. If the P-value is higher than 0.05, then the difference is non-significant.
Example: Suppose you apply a one-sided test to test whether women gain weight quickly compared to men. You get to know about the average weight between men and women and the factors promoting weight gain.
Step 5: Find out Whether the Null Hypothesis is Rejected or Supported
After conducting a statistical test, you should identify whether your null hypothesis is rejected or accepted based on the test results. It would help if you observed the P-value for this.
Example: If you find the P-value of your test is less than 0.5/5%, then you need to reject your null hypothesis (Ho: Women, on average, don’t gain weight quickly compared to men). On the other hand, if a null hypothesis is rejected, then it means the alternative hypothesis might be true (Ha: Women, on average, gain weight quickly compared to men. If you find your test’s P-value is above 0.5/5%, then it means your null hypothesis is true.
Step 6: Present the Outcomes of your Study
The final step is to present the outcomes of your study . You need to ensure whether you have met the objectives of your research or not.
In the discussion section and conclusion , you can present your findings by using supporting evidence and conclude whether your null hypothesis was rejected or supported.
In the result section, you can summarise your study’s outcomes, including the average difference and P-value of the two groups.
If we talk about the findings, our study your results will be as follows:
Example: In the study of identifying whether women gain weight quickly compared to men, we found the P-value is less than 0.5. Hence, we can reject the null hypothesis (Ho: Women, on average, don’t gain weight quickly than men) and conclude that women may likely gain weight quickly than men.
Did you know in your academic paper you should not mention whether you have accepted or rejected the null hypothesis?
Always remember that you either conclude to reject Ho in favor of Haor do not reject Ho . It would help if you never rejected Ha or even accept Ha .
Suppose your null hypothesis is rejected in the hypothesis testing. If you conclude reject Ho in favor of Haor do not reject Ho, then it doesn’t mean that the null hypothesis is true. It only means that there is a lack of evidence against Ho in favour of Ha. If your null hypothesis is not true, then the alternative hypothesis is likely to be true.
Example: We found that the P-value is less than 0.5. Hence, we can conclude reject Ho in favour of Ha (Ho: Women, on average, don’t gain weight quickly than men) reject Ho in favour of Ha. However, rejected in favour of Ha means (Ha: women may likely to gain weight quickly than men)
Frequently Asked Questions
What are the 3 types of hypothesis test.
The 3 types of hypothesis tests are:
- One-Sample Test : Compare sample data to a known population value.
- Two-Sample Test : Compare means between two sample groups.
- ANOVA : Analyze variance among multiple groups to determine significant differences.
What is a hypothesis?
A hypothesis is a proposed explanation or prediction about a phenomenon, often based on observations. It serves as a starting point for research or experimentation, providing a testable statement that can either be supported or refuted through data and analysis. In essence, it’s an educated guess that drives scientific inquiry.
What are null hypothesis?
A null hypothesis (often denoted as H0) suggests that there is no effect or difference in a study or experiment. It represents a default position or status quo. Statistical tests evaluate data to determine if there’s enough evidence to reject this null hypothesis.
What is the probability value?
The probability value, or p-value, is a measure used in statistics to determine the significance of an observed effect. It indicates the probability of obtaining the observed results, or more extreme, if the null hypothesis were true. A small p-value (typically <0.05) suggests evidence against the null hypothesis, warranting its rejection.
What is p value?
The p-value is a fundamental concept in statistical hypothesis testing. It represents the probability of observing a test statistic as extreme, or more so, than the one calculated from sample data, assuming the null hypothesis is true. A low p-value suggests evidence against the null, possibly justifying its rejection.
What is a t test?
A t-test is a statistical test used to compare the means of two groups. It determines if observed differences between the groups are statistically significant or if they likely occurred by chance. Commonly applied in research, there are different t-tests, including independent, paired, and one-sample, tailored to various data scenarios.
When to reject null hypothesis?
Reject the null hypothesis when the test statistic falls into a predefined rejection region or when the p-value is less than the chosen significance level (commonly 0.05). This suggests that the observed data is unlikely under the null hypothesis, indicating evidence for the alternative hypothesis. Always consider the study’s context.
You May Also Like
Descriptive research is carried out to describe current issues, programs, and provides information about the issue through surveys and various fact-finding methods.
Discourse analysis is an essential aspect of studying a language. It is used in various disciplines of social science and humanities such as linguistic, sociolinguistics, and psycholinguistic.
You can transcribe an interview by converting a conversation into a written format including question-answer recording sessions between two or more people.
USEFUL LINKS
LEARNING RESOURCES
COMPANY DETAILS
- How It Works
Hypothesis Testing
About hypothesis testing.
Watch the video for a brief overview of hypothesis testing:
Can’t see the video? Click here to watch it on YouTube.
Contents (Click to skip to the section):
What is a Hypothesis?
What is hypothesis testing.
- Hypothesis Testing Examples (One Sample Z Test).
- Hypothesis Test on a Mean (TI 83).
Bayesian Hypothesis Testing.
- More Hypothesis Testing Articles
- Hypothesis Tests in One Picture
- Critical Values
What is the Null Hypothesis?
Need help with a homework problem? Check out our tutoring page!
A hypothesis is an educated guess about something in the world around you. It should be testable, either by experiment or observation. For example:
- A new medicine you think might work.
- A way of teaching you think might be better.
- A possible location of new species.
- A fairer way to administer standardized tests.
It can really be anything at all as long as you can put it to the test.
What is a Hypothesis Statement?
If you are going to propose a hypothesis, it’s customary to write a statement. Your statement will look like this: “If I…(do this to an independent variable )….then (this will happen to the dependent variable ).” For example:
- If I (decrease the amount of water given to herbs) then (the herbs will increase in size).
- If I (give patients counseling in addition to medication) then (their overall depression scale will decrease).
- If I (give exams at noon instead of 7) then (student test scores will improve).
- If I (look in this certain location) then (I am more likely to find new species).
A good hypothesis statement should:
- Include an “if” and “then” statement (according to the University of California).
- Include both the independent and dependent variables.
- Be testable by experiment, survey or other scientifically sound technique.
- Be based on information in prior research (either yours or someone else’s).
- Have design criteria (for engineering or programming projects).
Hypothesis testing can be one of the most confusing aspects for students, mostly because before you can even perform a test, you have to know what your null hypothesis is. Often, those tricky word problems that you are faced with can be difficult to decipher. But it’s easier than you think; all you need to do is:
- Figure out your null hypothesis,
- State your null hypothesis,
- Choose what kind of test you need to perform,
- Either support or reject the null hypothesis .
If you trace back the history of science, the null hypothesis is always the accepted fact. Simple examples of null hypotheses that are generally accepted as being true are:
- DNA is shaped like a double helix.
- There are 8 planets in the solar system (excluding Pluto).
- Taking Vioxx can increase your risk of heart problems (a drug now taken off the market).
How do I State the Null Hypothesis?
You won’t be required to actually perform a real experiment or survey in elementary statistics (or even disprove a fact like “Pluto is a planet”!), so you’ll be given word problems from real-life situations. You’ll need to figure out what your hypothesis is from the problem. This can be a little trickier than just figuring out what the accepted fact is. With word problems, you are looking to find a fact that is nullifiable (i.e. something you can reject).
Hypothesis Testing Examples #1: Basic Example
A researcher thinks that if knee surgery patients go to physical therapy twice a week (instead of 3 times), their recovery period will be longer. Average recovery times for knee surgery patients is 8.2 weeks.
The hypothesis statement in this question is that the researcher believes the average recovery time is more than 8.2 weeks. It can be written in mathematical terms as: H 1 : μ > 8.2
Next, you’ll need to state the null hypothesis . That’s what will happen if the researcher is wrong . In the above example, if the researcher is wrong then the recovery time is less than or equal to 8.2 weeks. In math, that’s: H 0 μ ≤ 8.2
Rejecting the null hypothesis
Ten or so years ago, we believed that there were 9 planets in the solar system. Pluto was demoted as a planet in 2006. The null hypothesis of “Pluto is a planet” was replaced by “Pluto is not a planet.” Of course, rejecting the null hypothesis isn’t always that easy— the hard part is usually figuring out what your null hypothesis is in the first place.
Hypothesis Testing Examples (One Sample Z Test)
The one sample z test isn’t used very often (because we rarely know the actual population standard deviation ). However, it’s a good idea to understand how it works as it’s one of the simplest tests you can perform in hypothesis testing. In English class you got to learn the basics (like grammar and spelling) before you could write a story; think of one sample z tests as the foundation for understanding more complex hypothesis testing. This page contains two hypothesis testing examples for one sample z-tests .
One Sample Hypothesis Testing Example: One Tailed Z Test
Watch the video for an example:
A principal at a certain school claims that the students in his school are above average intelligence. A random sample of thirty students IQ scores have a mean score of 112.5. Is there sufficient evidence to support the principal’s claim? The mean population IQ is 100 with a standard deviation of 15.
Step 1: State the Null hypothesis . The accepted fact is that the population mean is 100, so: H 0 : μ = 100.
Step 2: State the Alternate Hypothesis . The claim is that the students have above average IQ scores, so: H 1 : μ > 100. The fact that we are looking for scores “greater than” a certain point means that this is a one-tailed test.
Step 4: State the alpha level . If you aren’t given an alpha level , use 5% (0.05).
Step 5: Find the rejection region area (given by your alpha level above) from the z-table . An area of .05 is equal to a z-score of 1.645.
Step 6: If Step 6 is greater than Step 5, reject the null hypothesis. If it’s less than Step 5, you cannot reject the null hypothesis. In this case, it is more (4.56 > 1.645), so you can reject the null.
One Sample Hypothesis Testing Examples: #3
Watch the video for an example of a two-tailed z-test:
Blood glucose levels for obese patients have a mean of 100 with a standard deviation of 15. A researcher thinks that a diet high in raw cornstarch will have a positive or negative effect on blood glucose levels. A sample of 30 patients who have tried the raw cornstarch diet have a mean glucose level of 140. Test the hypothesis that the raw cornstarch had an effect.
- State the null hypothesis : H 0 :μ=100
- State the alternate hypothesis : H 1 :≠100
- State your alpha level. We’ll use 0.05 for this example. As this is a two-tailed test, split the alpha into two. 0.05/2=0.025
- Find the z-score associated with your alpha level . You’re looking for the area in one tail only . A z-score for 0.75(1-0.025=0.975) is 1.96. As this is a two-tailed test, you would also be considering the left tail (z = 1.96)
- If Step 5 is less than -1.96 or greater than 1.96 (Step 3), reject the null hypothesis . In this case, it is greater, so you can reject the null.
*This process is made much easier if you use a TI-83 or Excel to calculate the z-score (the “critical value”). See:
- Critical z value TI 83
- Z Score in Excel
Hypothesis Testing Examples: Mean (Using TI 83)
You can use the TI 83 calculator for hypothesis testing, but the calculator won’t figure out the null and alternate hypotheses; that’s up to you to read the question and input it into the calculator.
Example problem : A sample of 200 people has a mean age of 21 with a population standard deviation (σ) of 5. Test the hypothesis that the population mean is 18.9 at α = 0.05.
Step 1: State the null hypothesis. In this case, the null hypothesis is that the population mean is 18.9, so we write: H 0 : μ = 18.9
Step 2: State the alternative hypothesis. We want to know if our sample, which has a mean of 21 instead of 18.9, really is different from the population, therefore our alternate hypothesis: H 1 : μ ≠ 18.9
Step 3: Press Stat then press the right arrow twice to select TESTS.
Step 4: Press 1 to select 1:Z-Test… . Press ENTER.
Step 5: Use the right arrow to select Stats .
Step 6: Enter the data from the problem: μ 0 : 18.9 σ: 5 x : 21 n: 200 μ: ≠μ 0
Step 7: Arrow down to Calculate and press ENTER. The calculator shows the p-value: p = 2.87 × 10 -9
This is smaller than our alpha value of .05. That means we should reject the null hypothesis .
Bayesian Hypothesis Testing: What is it?
Bayesian hypothesis testing helps to answer the question: Can the results from a test or survey be repeated? Why do we care if a test can be repeated? Let’s say twenty people in the same village came down with leukemia. A group of researchers find that cell-phone towers are to blame. However, a second study found that cell-phone towers had nothing to do with the cancer cluster in the village. In fact, they found that the cancers were completely random. If that sounds impossible, it actually can happen! Clusters of cancer can happen simply by chance . There could be many reasons why the first study was faulty. One of the main reasons could be that they just didn’t take into account that sometimes things happen randomly and we just don’t know why.
It’s good science to let people know if your study results are solid, or if they could have happened by chance. The usual way of doing this is to test your results with a p-value . A p value is a number that you get by running a hypothesis test on your data. A P value of 0.05 (5%) or less is usually enough to claim that your results are repeatable. However, there’s another way to test the validity of your results: Bayesian Hypothesis testing. This type of testing gives you another way to test the strength of your results.
Traditional testing (the type you probably came across in elementary stats or AP stats) is called Non-Bayesian. It is how often an outcome happens over repeated runs of the experiment. It’s an objective view of whether an experiment is repeatable. Bayesian hypothesis testing is a subjective view of the same thing. It takes into account how much faith you have in your results. In other words, would you wager money on the outcome of your experiment?
Differences Between Traditional and Bayesian Hypothesis Testing.
Traditional testing (Non Bayesian) requires you to repeat sampling over and over, while Bayesian testing does not. The main different between the two is in the first step of testing: stating a probability model. In Bayesian testing you add prior knowledge to this step. It also requires use of a posterior probability , which is the conditional probability given to a random event after all the evidence is considered.
Arguments for Bayesian Testing.
Many researchers think that it is a better alternative to traditional testing, because it:
- Includes prior knowledge about the data.
- Takes into account personal beliefs about the results.
Arguments against.
- Including prior data or knowledge isn’t justifiable.
- It is difficult to calculate compared to non-Bayesian testing.
Back to top
Hypothesis Testing Articles
- What is Ad Hoc Testing?
- Composite Hypothesis Test
- What is a Rejection Region?
- What is a Two Tailed Test?
- How to Decide if a Hypothesis Test is a One Tailed Test or a Two Tailed Test.
- How to Decide if a Hypothesis is a Left Tailed Test or a Right-Tailed Test.
- How to State the Null Hypothesis in Statistics.
- How to Find a Critical Value .
- How to Support or Reject a Null Hypothesis.
Specific Tests:
- Brunner Munzel Test (Generalized Wilcoxon Test).
- Chi Square Test for Normality.
- Cochran-Mantel-Haenszel Test.
- Granger Causality Test .
- Hotelling’s T-Squared.
- KPSS Test .
- What is a Likelihood-Ratio Test?
- Log rank test .
- MANCOVA Assumptions.
- MANCOVA Sample Size.
- Marascuilo Procedure
- Rao’s Spacing Test
- Rayleigh test of uniformity.
- Sequential Probability Ratio Test.
- How to Run a Sign Test.
- T Test: one sample.
- T-Test: Two sample .
- Welch’s ANOVA .
- Welch’s Test for Unequal Variances .
- Z-Test: one sample .
- Z Test: Two Proportion.
- Wald Test .
Related Articles:
- What is an Acceptance Region?
- How to Calculate Chebyshev’s Theorem.
- Contrast Analysis
- Decision Rule.
- Degrees of Freedom .
- Directional Test
- False Discovery Rate
- How to calculate the Least Significant Difference.
- Levels in Statistics.
- How to Calculate Margin of Error.
- Mean Difference (Difference in Means)
- The Multiple Testing Problem .
- What is the Neyman-Pearson Lemma?
- What is an Omnibus Test?
- One Sample Median Test .
- How to Find a Sample Size (General Instructions).
- Sig 2(Tailed) meaning in results
- What is a Standardized Test Statistic?
- How to Find Standard Error
- Standardized values: Example.
- How to Calculate a T-Score.
- T-Score Vs. a Z.Score.
- Testing a Single Mean.
- Unequal Sample Sizes.
- Uniformly Most Powerful Tests.
- How to Calculate a Z-Score.
Chat button -- NOT proactive
Introduction to data analysis and r: hypothesis testing, hypothesis testing.
- Variable Types
- Introduction to R
- R - Variables
- R - Functions
- R - Vectors
- R - Data Frames
- R - Factors
- R - Importing Data
- Choosing Your Analysis
- Measures of Proportion
- Normal Distributions
- Measures of Centrality
- Measures of Dispersion
- Standard Error of the Mean
- Analysis of Variance
- Linear Regression and Correlation
Problem with the module?
If you encounter any issues or errors in this module, please let me know using this feedback form:
- Issue Reporting for Data Analysis Module
We need to start our learning of data analysis by making sure we have an understanding of hypothesis testing.
The main goals of statistical analyses are to describe your data (descriptive stats) and draw conclusions about what they show (inferential stats). However, before you can draw conclusions, you first have to determine what you're looking for, you need to outline your hypothesis. After all, if you don't know your hypothesis, how will you know whether your data support it?
Hypotheses generally come in pairs (null and alternate), and these pairs have two forms (research and statistical). Your null and alternate research hypotheses will inform your null and alternate statistical hypotheses, and it is the latter pair that are the focus of any statistical analyses you run.
Research hypotheses
Your research hypotheses typically take the form of a pair of statements that describe in general terms what you will be testing. For example, let's say you're studying student learning. You want to see whether a group of student who receive additional writing instruction achieve higher scores on their final papers than a different group of students who receive no additional instruction.
Your null hypothesis takes the stance that there will be no difference, and your alternate hypothesis takes the stance that there will be a difference. Your null and alternate research hypotheses, therefore, could be something like this:
Null : Students receiving additional writing instruction perform no better or worse than students who don't.
Alternate : Students receiving additional writing instruction do perform better than students who don't.
Statistical hypotheses
Your statistical hypotheses restate your research hypotheses in more specific terms, typically detailing in some way the measurements you'll be taking and how your groups should relate to each other:
Null : Final paper scores of students who receive additional writing instruction are no different, on average, than the final paper scores of students who do not receive additional instruction.
Alternate : Final paper scores of students who receive additional writing instruction are different, on average, than the final paper scores of students who do not receive additional instruction.
You may have noticed that my alternate research hypothesis states that expect to see an increase in student performance, while my alternate statistical hypothesis just states that I expect to see a difference. This is an important distinction: even if you expect to see a change in one particular direction, as a general rule you should never define one direction in your statistical hypothesis unless the other direction is literally impossible. We'll cover this in more detail later when we talk about one- and two-tailed analyses.
Supplemental Reading
- Basic concepts of hypothesis testing (McDonald 2014)
- << Previous: Start Here
- Next: Variable Types >>
- Last Updated: Sep 30, 2024 6:41 PM
- URL: https://libguides.lib.miamioh.edu/data_analysis
- Business Essentials
- Leadership & Management
- Credential of Leadership, Impact, and Management in Business (CLIMB)
- Entrepreneurship & Innovation
- Digital Transformation
- Finance & Accounting
- Business in Society
- For Organizations
- Support Portal
- Media Coverage
- Founding Donors
- Leadership Team
- Harvard Business School →
- HBS Online →
- Business Insights →
Business Insights
Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.
- Career Development
- Communication
- Decision-Making
- Earning Your MBA
- Negotiation
- News & Events
- Productivity
- Staff Spotlight
- Student Profiles
- Work-Life Balance
- AI Essentials for Business
- Alternative Investments
- Business Analytics
- Business Strategy
- Business and Climate Change
- Creating Brand Value
- Design Thinking and Innovation
- Digital Marketing Strategy
- Disruptive Strategy
- Economics for Managers
- Entrepreneurship Essentials
- Financial Accounting
- Global Business
- Launching Tech Ventures
- Leadership Principles
- Leadership, Ethics, and Corporate Accountability
- Leading Change and Organizational Renewal
- Leading with Finance
- Management Essentials
- Negotiation Mastery
- Organizational Leadership
- Power and Influence for Positive Impact
- Strategy Execution
- Sustainable Business Strategy
- Sustainable Investing
- Winning with Digital Platforms
A Beginner’s Guide to Hypothesis Testing in Business
- 30 Mar 2021
Becoming a more data-driven decision-maker can bring several benefits to your organization, enabling you to identify new opportunities to pursue and threats to abate. Rather than allowing subjective thinking to guide your business strategy, backing your decisions with data can empower your company to become more innovative and, ultimately, profitable.
If you’re new to data-driven decision-making, you might be wondering how data translates into business strategy. The answer lies in generating a hypothesis and verifying or rejecting it based on what various forms of data tell you.
Below is a look at hypothesis testing and the role it plays in helping businesses become more data-driven.
Access your free e-book today.
What Is Hypothesis Testing?
To understand what hypothesis testing is, it’s important first to understand what a hypothesis is.
A hypothesis or hypothesis statement seeks to explain why something has happened, or what might happen, under certain conditions. It can also be used to understand how different variables relate to each other. Hypotheses are often written as if-then statements; for example, “If this happens, then this will happen.”
Hypothesis testing , then, is a statistical means of testing an assumption stated in a hypothesis. While the specific methodology leveraged depends on the nature of the hypothesis and data available, hypothesis testing typically uses sample data to extrapolate insights about a larger population.
Hypothesis Testing in Business
When it comes to data-driven decision-making, there’s a certain amount of risk that can mislead a professional. This could be due to flawed thinking or observations, incomplete or inaccurate data , or the presence of unknown variables. The danger in this is that, if major strategic decisions are made based on flawed insights, it can lead to wasted resources, missed opportunities, and catastrophic outcomes.
The real value of hypothesis testing in business is that it allows professionals to test their theories and assumptions before putting them into action. This essentially allows an organization to verify its analysis is correct before committing resources to implement a broader strategy.
As one example, consider a company that wishes to launch a new marketing campaign to revitalize sales during a slow period. Doing so could be an incredibly expensive endeavor, depending on the campaign’s size and complexity. The company, therefore, may wish to test the campaign on a smaller scale to understand how it will perform.
In this example, the hypothesis that’s being tested would fall along the lines of: “If the company launches a new marketing campaign, then it will translate into an increase in sales.” It may even be possible to quantify how much of a lift in sales the company expects to see from the effort. Pending the results of the pilot campaign, the business would then know whether it makes sense to roll it out more broadly.
Related: 9 Fundamental Data Science Skills for Business Professionals
Key Considerations for Hypothesis Testing
1. alternative hypothesis and null hypothesis.
In hypothesis testing, the hypothesis that’s being tested is known as the alternative hypothesis . Often, it’s expressed as a correlation or statistical relationship between variables. The null hypothesis , on the other hand, is a statement that’s meant to show there’s no statistical relationship between the variables being tested. It’s typically the exact opposite of whatever is stated in the alternative hypothesis.
For example, consider a company’s leadership team that historically and reliably sees $12 million in monthly revenue. They want to understand if reducing the price of their services will attract more customers and, in turn, increase revenue.
In this case, the alternative hypothesis may take the form of a statement such as: “If we reduce the price of our flagship service by five percent, then we’ll see an increase in sales and realize revenues greater than $12 million in the next month.”
The null hypothesis, on the other hand, would indicate that revenues wouldn’t increase from the base of $12 million, or might even decrease.
Check out the video below about the difference between an alternative and a null hypothesis, and subscribe to our YouTube channel for more explainer content.
2. Significance Level and P-Value
Statistically speaking, if you were to run the same scenario 100 times, you’d likely receive somewhat different results each time. If you were to plot these results in a distribution plot, you’d see the most likely outcome is at the tallest point in the graph, with less likely outcomes falling to the right and left of that point.
With this in mind, imagine you’ve completed your hypothesis test and have your results, which indicate there may be a correlation between the variables you were testing. To understand your results' significance, you’ll need to identify a p-value for the test, which helps note how confident you are in the test results.
In statistics, the p-value depicts the probability that, assuming the null hypothesis is correct, you might still observe results that are at least as extreme as the results of your hypothesis test. The smaller the p-value, the more likely the alternative hypothesis is correct, and the greater the significance of your results.
3. One-Sided vs. Two-Sided Testing
When it’s time to test your hypothesis, it’s important to leverage the correct testing method. The two most common hypothesis testing methods are one-sided and two-sided tests , or one-tailed and two-tailed tests, respectively.
Typically, you’d leverage a one-sided test when you have a strong conviction about the direction of change you expect to see due to your hypothesis test. You’d leverage a two-sided test when you’re less confident in the direction of change.
4. Sampling
To perform hypothesis testing in the first place, you need to collect a sample of data to be analyzed. Depending on the question you’re seeking to answer or investigate, you might collect samples through surveys, observational studies, or experiments.
A survey involves asking a series of questions to a random population sample and recording self-reported responses.
Observational studies involve a researcher observing a sample population and collecting data as it occurs naturally, without intervention.
Finally, an experiment involves dividing a sample into multiple groups, one of which acts as the control group. For each non-control group, the variable being studied is manipulated to determine how the data collected differs from that of the control group.
Learn How to Perform Hypothesis Testing
Hypothesis testing is a complex process involving different moving pieces that can allow an organization to effectively leverage its data and inform strategic decisions.
If you’re interested in better understanding hypothesis testing and the role it can play within your organization, one option is to complete a course that focuses on the process. Doing so can lay the statistical and analytical foundation you need to succeed.
Do you want to learn more about hypothesis testing? Explore Business Analytics —one of our online business essentials courses —and download our Beginner’s Guide to Data & Analytics .
About the Author
- Econometrics of Human Resources
- Hypothesis Testing - Writing, Examples and Steps
An empirical study begins with writing a hypothesis. If there is no hypothesis, we will not be able to test any cause and effect relationship. Therefore, its important to write a hypothesis that can be tested and can offer some great insights into a situation.
Weve been using the word hypothesis quite frequently in previous econometrics articles . In fact, we have represented a hypothesis statistically, developed econometrics models and calculated the extent to which an independent variable affects a dependent variable. However, we havent formally defined it. So, here we go:
In the simplest words, a hypothesis:
And a statistical hypothesis is an assumption about a situation or a population that can be represented and tested via any or a combination of statistical methods.
Therefore, the main elements of a hypothesis include:
However, a meticulously thought and refined hypothesis is not a guess.
How to Write a Hypothesis ?
You know what a hypothesis is; what purpose it serves; how it is to be tested. The entire study or experience revolves around a hypothesis. So, a slight mistake in writing a hypothesis could result in wastage of time, money and effort.
While testing a hypothesis is a complex procedure, writing a hypothesis is the trickiest part. Needless to say, you need to be extremely careful when writing a hypothesis that youre going to test. It is thinking about the right question a question that can be tested and results obtained from it can enhance your understanding or meet your objectives.
Remember that there is no single tried and tested method of writing a hypothesis. You can see a generic relationship between two variables and then can refine it. Here is an example:
Males and females differently handle employee issues .
In this statement, we wrote a generic hypothesis. It is not measurable.
Females handle employee issues better than males .
The second statement provides a direction, as in who does better. When you compare two things, it means a situation is measurable.
If females are assigned the task of handling employee issues, then they will do a better job than males because females have higher emotional quotient .
The third statement, as you can see, offers specific details. The difference in the level of emotional quotient of males and females sets the scene. It is measurable and quantifiable.
Therefore, a well written hypothesis should be:
Hypothesis Testing
Hypothesis testing refers to a formal process of investigating a supposition or statement to accept or reject it. The econometricians examine a random sample from the population. If it is consistent with the hypothesis, it is accepted. Otherwise it is rejected.
Types of Hypothesis
There are two types of hypothesis Null and Alternative.
A hypothesis test concludes whether to reject the null hypothesis and accept the alternative hypothesis or to fail to reject the null hypothesis. The decision is based on the value of X and R.
Points to be noted:
Decision Errors in Hypothesis Testing
Before we jump onto the process of hypothesis testing, lets learn about the errors that can result from it. The errors are divided into two categories:
When Null Hypothesis is:
When Alternative Hypothesis is:
Steps in Hypothesis Testing
Econometricians follow a formal process to test a hypothesis and determine whether it is to be rejected. The steps include:
The first step involves positioning the null and alternative hypotheses. Remember, that these are mutually exclusive. If one hypothesis states a fact, the other must reject it.
Consider statistical assumptions such as independence of observations from each other, normality of observations, random errors and probability distribution of random errors, randomization during sampling, etc.
This includes deciding the test which is to be carried out to test the hypothesis. At the same time, we need to decide how sample data will be used to test the null hypothesis.
At this stage, sample data is examined. Its when we find scores mean values, normal distribution, t distribution, z score, etc.
This stage involves making decision to either reject the null hypothesis in favor of alternative hypothesis or not to reject the null hypothesis.
Accepting or Rejecting Null Hypothesis
This is an extension of the last step - interpreting results in the process of hypothesis testing. A null hypothesis is accepted or rejected basis P value and the region of acceptance.
P value it is a function of the observed sample results. A threshold value is chosen before the test is conducted and is called the significance level, which is represented as α. If the calculated value of P ≤ α, it suggests the inconsistency between the observed data and the assumption that the null hypothesis is true . This suggests that the null hypothesis must be rejected. However, this doesnt mean that alternative hypothesis can be accepted as true. This is when Type I error occurs.
Example: You roll a pair of dice once and assume that these are fair and hence the result shown by rolling the dice would be fair.
The null hypothesis is the dice are fair. Youve assumed a significance level (α) of 0.04.
Now you roll the dice and observe that both show 6. The p value will be 1/36 or 1/ (6*6) assuming that the test static is uniformly distributed. The p value comes out to be 0.028 which is less than the assumed value of α. On this basis the null hypothesis is rejected. It suggests that the assumption suggesting that dice are fair is not correct.
Region of Acceptance It is the range of values that leads you to accept the null hypothesis. When you collect and observe sample data, you compute a test static. If its value falls within the specific range, the null hypothesis is accepted.
Example: You might hypothesize that the average weight of the students in a school is 30 kgs. To test this hypothesis, you collect a random sample and compute the mean score. If the sample mean falls close to the hypothesized mean, say between 29 and 31, you accept the null hypothesis. The region of acceptance, therefore, is 29 and 31. The values falling outside this region will fall in the region of rejection.
Hypothesis Tests One-Tailed and Two-Tailed
The region of acceptance or rejection can be directional or non-directional. Basis this, we decide whether to perform one-tailed or two-tailed test to accept or reject the hypothesis.
One-Tailed Test
When the region of acceptance falls entirely on one side of the tail of distribution, one-tailed test is conducted. This means in a test of a statistical hypothesis when values fall outside the specific region only on one side of the sampling distribution, it is one-tailed test.
Example: A null hypothesis says that the marriageable age of a person is greater than or equal to 24. Then, the alternative hypothesis would be that the marriageable age is less than 24. The region of rejection, in this case, would be on the left hand side of the sampling distribution, which is the set of numbers less than 24.
Two-Tailed Test
When the region of rejection falls on the both sides of sampling distribution, its a two-tailed test.
Example: The null hypothesis says that the marriageable age of a person is equal to 24. Then, the alternative hypothesis would be that the marriageable age is less than or greater than 24. The region of rejection, in this case, would be on both sides of the sampling distribution, which are two sets of numbers one greater than 24 and the other less than 24.
Sample Problem
Election commission supposes that at least 80% of the 1,000,000 voters will turn up to vote in upcoming elections. A survey of 100 randomly sampled voters finds that only 71 percent will turn up. How to find the region of acceptance, assuming a significance level of 0.05 or 5%?
Formulate hypotheses
Null Hypothesis: At least 80% of the voters will turn up to vote.
H 0 suggest that P ≥ 80
Alternative Hypothesis: Less than 80% will turn up to vote.
H a suggests P ≤ 80
Data Sampling
The sample of the population is taken randomly.
Formulating an Analysis Plan
The proportion of sample voters who say that they will turn up to vote is 71% or .71. This is also the test of statistic.
Investigating the Data
Lets assume that the mean of sample data is .80, which is hypothesized proportion of sample which will turn to vote.
Standard deviation (σ) = √ [ {P*(1-P)/n} * {(N-n)/(N-1)} ]
P = test value specified in null hypothesis
n = sample size
N = population size
σ = √ [ {(0.80 * 0.20)/100} * {(1,000,000 100)/(1,000,000 1)} ]
σ = √ [0.0016 * 0.9999] = √ 0.0015998 = √0.0016 = 0.04
Finding the lower and upper limits of region of acceptance
The upper limit will be equal to 100% or 1 since this is the highest proportion of the population.
The lower limit (LL) = P(X ≤LL) = α = 0.05
If we put the values in a statistical normal distribution calculator, LL comes out to be 0.734.
This means that the region of acceptance lies between 0.734 and 1.
Accepting or Rejecting the Hypothesis
The survey on sample proportion suggested that 71% voters will turn up to vote. But the region of acceptance is between 0.734 and 1. It means that .71 falls out of the region of acceptance and falls in the region of rejection on the left hand side. Therefore, we reject the null hypothesis that 80% of the voters will turn out to vote in upcoming elections.
Authorship/Referencing - About the Author(s)
The article is Written and Reviewed by Management Study Guide Content Team . MSG Content Team comprises experienced Faculty Member, Professionals and Subject Matter Experts. We are a ISO 2001:2015 Certified Education Provider . To Know more, click on About Us . The use of this material is free for learning and education purpose. Please reference authorship of content used, including link(s) to ManagementStudyGuide.com and the content page url.
- Econometrics - Meaning, Elements, Techniques & its Application
- Linear Regression Model - Prerequisites, Case Study, Goodness-of-Fit
- Applied Econometrics - Steps to Carry Out an Empirical Study
IMAGES
VIDEO
COMMENTS
Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.
When writing the conclusion of a hypothesis test, we typically include: Whether we reject or fail to reject the null hypothesis. The significance level. A short explanation in the context of the hypothesis test. For example, we would write: We reject the null hypothesis at the 5% significance level.
6. Write a null hypothesis. If your research involves statistical hypothesis testing, you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0, while the alternative hypothesis is H 1 or H a.
Hypothesis Tests. A hypothesis test consists of five steps: 1. State the hypotheses. State the null and alternative hypotheses. These two hypotheses need to be mutually exclusive, so if one is true then the other must be false. 2. Determine a significance level to use for the hypothesis. Decide on a significance level.
2. Photo from StepUp Analytics. Hypothesis testing is a method of statistical inference that considers the null hypothesis H ₀ vs. the alternative hypothesis H a, where we are typically looking to assess evidence against H ₀. Such a test is used to compare data sets against one another, or compare a data set against some external standard.
Step 7: Based on steps 5 and 6, draw a conclusion about H0. If the F\calculated F \calculated from the data is larger than the Fα F α, then you are in the rejection region and you can reject the null hypothesis with (1 − α) (1 − α) level of confidence. Note that modern statistical software condenses steps 6 and 7 by providing a p p -value.
The researchers write their hypotheses. These statements apply to the population, so they use the mu (μ) symbol for the population mean parameter.. Null Hypothesis (H 0): The population means of the test scores for the two groups are equal (μ 1 = μ 2).; Alternative Hypothesis (H A): The population means of the test scores for the two groups are unequal (μ 1 ≠ μ 2).
When writing up the results of a hypothesis test, there's usually several pieces of information that you need to report, but it varies a fair bit from test to test. Throughout the rest of the book I'll spend a little time talking about how to report the results of different tests (see Section 12.1.9 for a particularly detailed example), so ...
Likelihood ratio. In the likelihood ratio test, we reject the null hypothesis if the ratio is above a certain value i.e, reject the null hypothesis if L(X) > 𝜉, else accept it. 𝜉 is called the critical ratio.. So this is how we can draw a decision boundary: we separate the observations for which the likelihood ratio is greater than the critical ratio from the observations for which it ...
5.2. 5.2 - Writing Hypotheses. The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis (\ (H_0\)) and an alternative hypothesis (\ (H_a\)). Null Hypothesis. The statement that there is not a difference in the population (s), denoted as \ (H_0 ...
Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.
Below these are summarized into six such steps to conducting a test of a hypothesis. Set up the hypotheses and check conditions: Each hypothesis test includes two hypotheses about the population. One is the null hypothesis, notated as H 0, which is a statement of a particular parameter value. This hypothesis is assumed to be true until there is ...
Hypothesis testing is a crucial procedure to perform when you want to make inferences about a population using a random sample. These inferences include estimating population properties such as the mean, differences between means, proportions, and the relationships between variables. This post provides an overview of statistical hypothesis testing.
148. 4. Photo by Anna Nekrashevich from Pexels. Hypothesis testing is a common statistical tool used in research and data science to support the certainty of findings. The aim of testing is to answer how probable an apparent effect is detected by chance given a random data sample. This article provides a detailed explanation of the key concepts ...
Hypothesis testing is a scientific method used for making a decision and drawing conclusions by using a statistical approach. It is used to suggest new ideas by testing theories to know whether or not the sample data supports research. A research hypothesis is a predictive statement that has to be tested using scientific methods that join an ...
This document is specifically about how to report statistical results. Refer to our handout "Writing an APA Empirical (lab) Report" for details on writing a results section. Every statistical test that you report should relate directly to a hypothesis. Begin the results section by restating each hypothesis, then state whether your results ...
Step 2: State the Alternate Hypothesis. The claim is that the students have above average IQ scores, so: H 1: μ > 100. The fact that we are looking for scores "greater than" a certain point means that this is a one-tailed test. Step 3: Draw a picture to help you visualize the problem. Step 4: State the alpha level.
Your null hypothesis takes the stance that there will be no difference, and your alternate hypothesis takes the stance that there will be a difference. Your null and alternate research hypotheses, therefore, could be something like this: Null: Students receiving additional writing instruction perform no better or worse than students who don't.
3. One-Sided vs. Two-Sided Testing. When it's time to test your hypothesis, it's important to leverage the correct testing method. The two most common hypothesis testing methods are one-sided and two-sided tests, or one-tailed and two-tailed tests, respectively. Typically, you'd leverage a one-sided test when you have a strong conviction ...
It tests the null hypothesis that the population variances are equal (called homogeneity of variance or homoscedasticity). Suppose the resulting p-value of Levene's test is less than the significance level (typically 0.05).In that case, the obtained differences in sample variances are unlikely to have occurred based on random sampling from a population with equal variances.
3 Define your variables. Once you have an idea of what your hypothesis will be, select which variables are independent and which are dependent. Remember that independent variables can only be factors that you have absolute control over, so consider the limits of your experiment before finalizing your hypothesis.
Aug 5, 2022. 6. Photo by Andrew George on Unsplash. Student's t-tests are commonly used in inferential statistics for testing a hypothesis on the basis of a difference between sample means. However, people often misinterpret the results of t-tests, which leads to false research findings and a lack of reproducibility of studies.
Hypothesis testing is a statistical process to determine the likelihood that a given or null hypothesis is true. It goes through a number of steps to find out what may lead to rejection of the hypothesis when its true and acceptance when its not true. This article discusses the steps which a given hypothesis goes through, including the decisional errors that could happen in a statistical process.